
SQL-on-Hadoop Tutorial
VLDB 2015

9/28/15 SQL-on-Hadoop Tutorial

1

9/28/15 SQL-on-Hadoop Tutorial

Fatma Özcan
IBM Research

IBM Big SQL

Ippokratis Pandis
Cloudera

Cloudera Impala

Daniel Abadi
Yale University and
Teradata

HadoopDB/Hadapt

Shivnath Babu
Duke University

Starfish

2

Presenters

Why SQL-on-Hadoop?

´ People need to process data in parallel

´ Hadoop is by far the leading open source parallel data
processing platform

´ Low costs of HDFS results in heavy usage

9/28/15 SQL-on-Hadoop Tutorial

3

Lots of data in Hadoop with appetite to process it

MapReduce is not the answer

´ MapReduce is a powerful primitive to do many kinds of
parallel data processing

´ BUT
´ Little control of data flow

´ Fault tolerance guarantees not always necessary

´ Simplicity leads to inefficiencies

´ Does not interface with existing analysis software

´  Industry has existing training in SQL

9/28/15 SQL-on-Hadoop Tutorial

4

SQL interface for Hadoop critical for mass adoption

´ Decades of research in parallel database systems
´ Efficient data flow

´ Load balancing in the face of skew

´ Query optimization

´ Vectorized processing

´ Dynamic compilation of query operators

´ Co-processing of queries

9/28/15 SQL-on-Hadoop Tutorial

5

Massive talent war between SQL-on-Hadoop
companies for members of database community

The database community knows how
to process data

SQL-on-Hadoop is not a direct
implementation of parallel DBMSs

´ Little control of storage
´ Most deployments must be over HDFS

´ Append-only file system

´ Must support many different storage formats

´ Avro, Parquet, RCFiles, ORC, Sequence Files

´ Little control of metadata management
´ Optimizer may have limited access to statistics

´ Little control of resource management
´ YARN still in its infancy

9/28/15 SQL-on-Hadoop Tutorial

6

SQL-on-Hadoop is not a direct
implementation of parallel DBMSs

´ Hadoop often used a data dump (swamp?)
´ Data often unclean, irregular, and unreliable

´ Data not necessarily relational
´  HDFS does not enforce structure in the data

´ Nested data stored as JSON extremely popular

´ Scale larger than previous generation parallel database
systems
´  Fault tolerance vs. query performance

´ Most Hadoop components written in Java

´ Want to play nicely with the entire Hadoop ecosystem 9/28/15 SQL-on-Hadoop Tutorial

7

Outline of Tutorial

´ This session [13:30-15:00]
´ SQL-on-Hadoop Technologies

´ Storage

´ Run-time engine

´ Query optimization

´ Q&A

9/28/15 SQL-on-Hadoop Tutorial

8

´ Second Session [15:30-17:00]
´ SQL-on-Hadoop examples

´ HadoopDB/Hadapt

´ Presto

´ Impala

´ BigSQL

´ SparkSQL

´ Phoenix/Spice Machine

´ Research directions

´ Q&A

Storage

9/28/15 SQL-on-Hadoop Tutorial

9

Quick Look at HDFS

9/28/15 SQL-on-Hadoop Tutorial

10

…

NameNode

DataNode DataNode DataNode

´ Good for
´ Storing large files

´ Write once and read many times

´ “Cheap” commodity hardware

´ Not good for
´ Low-latency reads

´ Short-circuit reads and HDFS caching help

´ Large amounts of small files

´ Multiple writers

9/28/15 SQL-on-Hadoop Tutorial

11 HDFS is

In-situ Data Processing

´ HDFS as the data dump
´ Store the data first, figure out what to do later

´ Most data arrive in text format
´ Transform, cleanse the data

´ Create data marts in columnar formats

´ Lost of nested, JSON data

´ Some SQL in data transformations, but mostly other
languages, such as Pig, Cascading, etc..

´ Columnar formats are good for analytics

9/28/15 SQL-on-Hadoop Tutorial

12

´ Most SQL-on-Hadoop systems do not control or own the data
´ Hive, Impala, Presto, Big SQL, Spark SQL, Drill

´ Other SQL-on-Hadoop systems tolerate HDFS data, but work
better with their own proprietary storage
´ HadoopDB/Hadapt

´ HAWQ, Actian Vortex, and HP Vertica

9/28/15 SQL-on-Hadoop Tutorial

13 SQL-on-Hadoop according to storage formats

´ Only support native Hadoop formats with open-
source reader/writers

´ Any Hadoop tool can generate their data
´ Pig, Cascading and other ETL tools

´ They are more of a query processor than a database

´ Indexing is a challenge !!

´ No co-location of multiple tables

´ Due to HDFS

9/28/15 SQL-on-Hadoop Tutorial

14 Query Processors with HDFS Native Formats

´ Almost all exploit some existing database systems

´ They store their own binary format on HDFS

´ Hadapt stores the data in a single node database,
like postgres
´ Can exploit Postgres indexes

´ HAWQ, Actian, HP Vertica, and Hadapt all control
how tables are partitioned, and can support co-
located joins

9/28/15 SQL-on-Hadoop Tutorial

15 Systems with Proprietary Formats

´ CSV files are most common for ETL-like workloads

´ Lots of nested and complex data
´ Arrays, structs, maps, collections

´ Two major columnar formats
´ ORCFile

´ Parquet

´ Data serialization
´ JSON and Avro

´ Protocol buffers and Thrift
9/28/15 SQL-on-Hadoop Tutorial

16 HDFS Native Formats

17

9/28/15 SQL-on-Hadoop Tutorial

17
Parquet

§ PAX format, supporting nested data

§  Idea came from the Google‘s Dremel System

§ Major contributors: Twitter & Cloudera

§ Provides dictionary encoding and several compressions

§ Preffered format for Impala, IBM Big SQL, and Drill

§ Can use Thrift or Avro to describe the schema

Nested data

§ A natural schema
§ Flexible
§  Less duplication applying

denormalization

Columnar storage
§ Fast compression
§ Schema projection
§ Efficient encoding

Parquet, cont.
´  A table with N columns is split

into M row groups.

´  The file metadata contains
the locations of all the
column metadata start
locations.

´  Metadata is written after the
data to allow for single pass
writing.

´  There are three types of
metadata: file metadata,
column (chunk) metadata
and page header metadata.

´  Row group metadata
includes

´  Min-max values for skipping

9/28/15 SQL-on-Hadoop Tutorial

18

´ Second generation, following RC file

´ PAX formats with all data in a single file

´ Hortonworks is the major contributor, together with Microsoft

´ Preferred format for Hive, and Presto

´ Supports
´ Dictionary encoding

´  Fast compression

´ File, and stripe level metadata

´ Stripe indexing for skipping

´ Now metadata even includes bloom filters for point query lookups

9/28/15 SQL-on-Hadoop Tutorial

19 ORCFile

9/28/15 SQL-on-Hadoop Tutorial

20
ORCFile Layout

´  No updates in HDFS

´  Appends to HDFS files are supported,
but not clear how much they are
used in production

´  Updates are collected in delta files

´  At the time of read delta and main
files are merged

´  Special inputFormats

´  Lazy compaction to merge delta
files and main files
´ When delta files reach a certain size

´  Scheduled intervals

9/28/15 SQL-on-Hadoop Tutorial

21

File A

delta
1

delta
2

delta
n

…

Handling Updates in HDFS

SQL on NoSQL!

´ Put a NoSQL solution on top of HDFS
´ For the record, you can avoid HDFS completely

´ But, this is a SQL-on-Hadoop tutorial

´ NoSQL solutions can provide CRUD at scale
´ CRUD = Create, Read, Update, Delete

´ And, then run SQL on it?

´ Sounds crazy? Well, lets see

9/28/15 SQL-on-Hadoop Tutorial

22

23 HBase: The Hadoop Database

´ Not HadoopDB, which we will see later in the tutorial

´ HBase is a data store built on top of HDFS based on Google Bigtable

´ Data is logically organized into tables, rows, and columns
´ Although, Key-Value storage principles are used at multiple points in the design

´ Columns are organized into Column Families (CF)

´ Supports record-level CRUD, record-level lookup, random updates

´ Supports latency-sensitive operations

HBase Architecture 24

HBase Architecture 25

HBase stores three types of files
on HDFS:
•  WALs
•  HFiles
•  Links

HBase Read and Write Paths 26

HFile Structure

27

•  Immutable
•  Created on flush or compaction

•  Sequential writes
•  Read randomly or sequentially
•  Data is in blocks

•  HFile blocks are not HDFS blocks
•  Default data block size == 64K
•  Default index block size == 128K
•  Default bloom filter block size
== 128K

•  Use smaller block sizes for
faster random lookup
•  Use larger block sizes for faster scans
•  Compression is recommended
•  Block encoding is recommended

HFile Format

Run-time Engine

9/28/15 SQL-on-Hadoop Tutorial

28

´ Low Latency

´ High Throughput

´ Degree of tolerance to faults

´ Scalability in data size

´ Scalability in cluster size

´ Resource elasticity

´ Multi-tenancy

´ Ease of installation in existing environments

9/28/15 SQL-on-Hadoop Tutorial

29 Design Decisions: Influencers

´ Push computation to data

´ Columnar data formats

´ Vectorization

´ Support for multiple data formats

´ Support for UDFs

9/28/15 SQL-on-Hadoop Tutorial

30 Accepted across SQL-on-Hadoop Solutions

´ What is the Lowest Common Execution Unit

´ Use of Push Vs. Pull

´ On the JVM or not

´ Fault tolerance: Intra-query or inter-query

´ Support for multi-tenancy

9/28/15 SQL-on-Hadoop Tutorial

31 Differences across SQL-on-Hadoop Solutions

´ Hive
´ Tenzing

9/28/15 SQL-on-Hadoop Tutorial

32 SQL on MapReduce

9/28/15 SQL-on-Hadoop Tutorial

33 Hive

9/28/15 SQL-on-Hadoop Tutorial

34 Example: Joins in MapReduce

´ Having a MapReduce Job as the Lowest Execution Unit
quickly becomes restrictive

´ Query execution plans become MapReduce workflows

9/28/15 SQL-on-Hadoop Tutorial

35 Limitations

D1 D2

D3

D4

D6 D5

D7

D01 D02

J1 J2

J3

J4

J5 J6

J7

MapReduce Jobs

36

Datasets

MapReduce Workflows

´ On efficient joins in the MapReduce paradigm

´ On reducing the number of MapReduce jobs by
packing/collapsing the MapReduce workflow
´ Horizontally

´ Shared scans

´ Vertically

´ Making using of static and dynamic partitioning

´ On efficient management of intermediate data

9/28/15 SQL-on-Hadoop Tutorial

37 Research Done to Address these Limitations

´ Dryad
´ Tez

9/28/15 SQL-on-Hadoop Tutorial

38 From MapReduce to DAGs

9/28/15 SQL-on-Hadoop Tutorial

39 Dryad: Dataflows as First-class Citizens

9/28/15 SQL-on-Hadoop Tutorial

40 Smart DAG Execution in Dryad

Tez: Inspired by Dryad and Powered by YARN

9/28/15 SQL-on-Hadoop Tutorial

41

´ The Hadoop Community realized that
MapReduce cannot be the Lowest
Execution Unit for all data apps

´ Separated out the resource
management aspects from
application management

´ YARN is best seen as an Operating
System for Data Processing Apps

´ Recall the 80s: Databases and
Operating Systems: Friends or Foes?

9/28/15 SQL-on-Hadoop Tutorial

42 Quick Detour on YARN

An Example of What Tez Enables

9/28/15 SQL-on-Hadoop Tutorial

43

A Tez Slide on Tez

9/28/15 SQL-on-Hadoop Tutorial

44

part-
0

part-
1

part-
2

part-
3

part-
0

part-
1

part-
2

part-
3

map filter reduceBykey map saveAsTextFile

part-
0

part-
1

part-
2

part-
3

part-
0

part-
1

part-
2

part-
3

part-
0

part-
1

part-
2

part-
3

part-
0

part-
1

part-
2

part-
3

RDD0

RDD1

RDD2

RDD3

RDD4

HDFS

sc.textFile(hdfsPath)
 .map(parseInput)
 .filter(subThreshold)
 .reduceByKey(tallyCount)
 .map(formatOutput)
 .saveAsTextFile(outPath)

Spark: A Different Way to Look at a Dataflow

sc.textFile(hdfsPath)
 .map(parseInput)
 .filter(subThreshold)
 .reduceByKey(tallyCount)
 .map(formatOutput)
 .saveAsTextFile(outPath)

part-
0

part-
1

part-
2

part-
3

part-
0

part-
1

part-
2

part-
3

map filter reduceBykey map saveAsTextFile

part-
0

part-
1

part-
2

part-
3

part-
0

part-
1

part-
2

part-
3

part-
0

part-
1

part-
2

part-
3

part-
0

part-
1

part-
2

part-
3

HDFS

Stage 0 Stage 1

RDD0

RDD1

RDD2

RDD3

RDD4

Spark: A Different Way to Look at a Dataflow

part-
0

part-
1

part-
2

part-
3

part-
0

part-
1

part-
2

part-
3

map filter reduceBykey

map

saveAsTextFile

part-
0

part-
1

part-
2

part-
3

part-
0

part-
1

part-
2

part-
3

part-
0

part-
1

part-
2

part-
3

part-
0

part-
1

part-
2

part-
3

RDD0

RDD1

RDD2

RDD3

RDD4

HDFS

Stage 0 Stage 1

sc.textFile(hdfsPath)
 .map(parseInput)
 .filter(subThreshold)
 .reduceByKey(tallyCount)
 .map(formatOutput)
 .saveAsTextFile(outPath)

Spark: A Different Way to Look at a Dataflow

part-
0

part-
1

part-
2

part-
3

part-
0

part-
1

part-
2

part-
3

map filter reduceBykey map saveAsTextFile

part-
0

part-
1

part-
2

part-
3

part-
0

part-
1

part-
2

part-
3

part-
0

part-
1

part-
2

part-
3

part-
0

part-
1

part-
2

part-
3

Ex
e

c
0

Ex
e

c
1

Ex
e

c
2

Ex
e

c
3

RDD0

RDD1

RDD2

RDD3

RDD4

HDFS

sc.textFile(hdfsPath)
 .map(parseInput)
 .filter(subThreshold)
 .reduceByKey(tallyCount)
 .map(formatOutput)
 .saveAsTextFile(outPath)

Stage 0 Stage 1

Spark: A Different Way to Look at a Dataflow

Spark: A Different Way to Look at a Dataflow

9/28/15 SQL-on-Hadoop Tutorial

49

Fault Tolerance

9/28/15 SQL-on-Hadoop Tutorial

50

MapReduce Fault Tolerance

9/28/15 SQL-on-Hadoop Tutorial

51

Map

Map

Map

Map

Map

Reduce

Reduce

Reduce

Reduce

HDFS HDFS

Map

Map

Map

Map

Map

Reduce

Reduce

Reduce

Reduce

MapReduce Fault Tolerance

9/28/15 SQL-on-Hadoop Tutorial

52

Map

Map

Map

Map

Map

Reduce

Reduce

Reduce

Reduce

HDFS HDFS

Map

Map

Map

Map

Map

Reduce

Reduce

Reduce

Reduce

MapReduce Fault Tolerance

9/28/15 SQL-on-Hadoop Tutorial

53

Map

Map

Map

Map

Map

Reduce

Reduce

Reduce

Reduce

HDFS HDFS

Map

Map

Map

Map

Map

Reduce

Reduce

Reduce

Reduce

MapReduce Fault Tolerance

9/28/15 SQL-on-Hadoop Tutorial

54

Map

Map

Map

Map

Map

Reduce

Reduce

Reduce

Reduce

HDFS HDFS

Map

Map

Map

Map

Map

Reduce

Reduce

Reduce

Reduce

MapReduce Fault Tolerance

9/28/15 SQL-on-Hadoop Tutorial

55

Map

Map

Map

Map

Map

Reduce

Reduce

Reduce

Reduce

HDFS HDFS

Map

Map

Map

Map

Map

Reduce

Reduce

Reduce

Reduce

MapReduce Fault Tolerance

9/28/15 SQL-on-Hadoop Tutorial

56

Map

Map

Map

Map

Map

Reduce

Reduce

Reduce

Reduce

HDFS HDFS

Map

Map

Map

Map

Map

Reduce

Reduce

Reduce

Reduce

9/28/15 SQL-on-Hadoop Tutorial

57

0
20
40
60
80

100
120
140
160
180
200

Fault tolerance Slowdown tolerance

Pe
rc

en
ta

ge
 S

lo
w

do
w

n
Traditional
DBMS
MapReduce

•  SELECT sourceIP,
 SUM(adRevenue)
FROM UserVisits
GROUP BY sourceIP

•  Node fails (or slows down
by factor of 2) in the
middle of query

Fault Tolerance

Downsides of MapReduce Fault
Tolerance

9/28/15 SQL-on-Hadoop Tutorial

58

Map

Map

Map

Map

Map

Reduce

Reduce

Reduce

Reduce

HDFS HDFS

Map

Map

Map

Map

Map

Reduce

Reduce

Reduce

Reduce

Map output
written to disk

Reduce output
written to HDFS

Spark RDDs

´ Stores intermediate results in memory rather than disk
´ Advantage: Performance

´ Disadvantage: Memory requirements

9/28/15 SQL-on-Hadoop Tutorial

59

Resource Management

9/28/15 SQL-on-Hadoop Tutorial

60

Resource Management

´ (At least) Two dimension problem:

1.  RM across different frameworks
´ Usually not a dedicated cluster

´ Shared across multiple frameworks
´ ETL (MapReduce, Spark), Hbase

´ SQL-on-Hadoop processing

2.  RM across concurrent queries

9/28/15 SQL-on-Hadoop Tutorial

61

RM -- Across frameworks

´ YARN – Yet Another Resource Negotiator

´ Centralized, cluster-wide resource management
system

´ Allows frameworks to share resources without
partitioning between them

´ Designed for batch-mostly processing

´ Not mature

´ Not good for interactive analytics

´ Not meant for long running processes

´ Approaches: Llama and Slider
9/28/15 SQL-on-Hadoop Tutorial

62

RM -- LLAMA (low-latency application master)

´ Introduced by Cloudera
´ LLAMA acts as a proxy between Impala and YARN
´ Mitigates some of the batch-centric design aspects of
YARN:
´ High resource acquisition latency -> solves via resource caching

´ Resource request is immutable -> solves via expansion request

´ Resource allocation is incremental -> solves via gang scheduling

6
3

´  Slider allows running non-YARN enabled applications on YARN

´ Without having to write your own custom Application Master

´  Existing applications are packaged as Slider applications

´  Encapsulates a set of one or more application components or roles

´ Deployed by Slider, runs in containers across a YARN cluster

´  Pre-built packages for HBase, Accumulo, Storm, and
jmemcached

´  Packages need to be custom built for other applications

´  Some notable Slider features

´ Applications can be stopped and started later à state is persisted

´ Container failures are automatically detected by Slider and
restarted

64

64 RM -- Apache Slider

Query Optimization

9/28/15 SQL-on-Hadoop Tutorial

65

Some Techniques We Know and Love
Are not Directly Applicable

´ Indexing

´ Zone-maps

´ Co-located joins

´ Query rewrites

´ Cost-based
optimization

´  Databases own their storage
SQL-on-Hadoop systems do
not

´ Metadata management is
tricky

´ Data inserted/loaded without
SQL system knowledge

´ No co-location of related
tables

´  HDFS is for most practical
purposes, read-only

9/28/15 SQL-on-Hadoop Tutorial

66

´ Hive Partition tables maintain metadata values as one folder/

directory in HDFS, per distinct value:

´ Example: PARTITIONED BY (country STRING, year INT, month INT, day INT) ;

´ Folder/Directory created for country=US/year=2012/month=12/day=22

´ Partitioning only logical, not physical

´ Partition pruning eliminates reading files that are not needed

´ Almost all SQL-on-Hadoop offerings support this

´  Hive, Impala, SparkSQL, IBM BigSQL, ….
9/28/15 SQL-on-Hadoop Tutorial

67 I/O Elimination for HDFS Data: Partition-level

´ ORCFile broken into Stripes (250MB default)

´  Index with Min/Max values stored for each Column

´ Data is a “stream” of columns

´ Bloom filters for each stripe in ORCFile allow fast lookups

´ Parquet also supports min/max values

´ Works well when data is sorted, not very effective otherwise

9/28/15 SQL-on-Hadoop Tutorial

68 I/O Elimination for HDFS Data: Rowblock-level

Quick look at query optimizers

´ Two types of optimization
´ Logical transformations to transform query into equivalent but simpler form

´ Cost-based enumeration of alternative execution plans

´ Most systems support the first one

´ Cost-based optimization depends on good statistics and a good
model of the execution environment
´ Without controlling data storage, statistics are “gestimates”

9/28/15 SQL-on-Hadoop Tutorial

69

´ Selection/projection pushdown

´ Nested SQL queries require more sophisticated rewrites,
such as decorrelation

´ New systems all have rewrites but lack complex
decorrelation and subquery optimization ones
´ Hive, Impala, Presto, Spark SQL

´ Systems that leverage mature DB technology offer more
sophisticated rewrite engines
´  IBM SQL, Hadapt, HP Vertica

9/28/15 SQL-on-Hadoop Tutorial

70 Query Rewrite

´ Hive analyze table collects basic statistics
´ Column value distributions, min-max, no-of-distinct values

´ No control of data à data changes without the systems’
knowledge

´ Multi-tenant system makes it harder to build a cost
model
´ More complex system behavior

9/28/15 SQL-on-Hadoop Tutorial

71

More adaptive query processing is needed

Cost-based Optimization

´ Co-partitioning two tables on the join key enables local joins

´ HDFS default block placement policy scatters blocks in the
cluster

´ Actian Vortex changes HDFS default block placement to
enforce co-located joins

9/28/15 SQL-on-Hadoop Tutorial

72

Ø  Files A & B are co-located
Ø  Files C & D are co-located

File A File B

File D File C

Co-located joins

Outline of Tutorial

´ This session [13:30-15:00]
´ SQL-on-Hadoop Technologies

´ Storage

´ Run-time engine

´ Query optimization

´ Q&A

9/28/15 SQL-on-Hadoop Tutorial

73

´ Second Session [15:30-17:00]
´ SQL-on-Hadoop examples

´ HadoopDB/Hadapt

´ Presto

´ Impala

´ BigSQL

´ SparkSQL

´ Phoenix/Spice Machine

´ Research directions

´ Q&A

HadoopDB

´  First of avalanche of SQL-on-Hadoop solutions to claim 100x faster than Hive (on
certain types of queries)

´  Used Hadoop MapReduce to coordinate execution of multiple independent
(typically single node, open source) database systems

´ Maintained MapReduce’s fault tolerance

´  Sped up single-node processing via leveraging database performance optimizations:

´ Compression

´ Vectorization

´ Partitioning

´ Column-orientation

´ Query optimization

´ Broadcast joins

´  Flexible query interface (both SQL and MapReduce)

74

HadoopDB Architecture 75

HadoopDB SMS Planner 76

HadoopDB History

´ Paper published in 2009

´ Company founded in 2010 (Hadapt) to commercialize
HadoopDB

´ Added support for search in 2011 (for major insurance
customer)

´ Added JSON support in 2012

´ Added interactive query engine in 2013

´ Acquired by Teradata in 2014

9/28/15 SQL-on-Hadoop Tutorial

77

Teradata Unified Data Architecture: QueryGrid

Marketing
Executives

Operational
Systems

Customers
& Partners

Frontline
Workers

Business
Analysts

Data
Scientists

Engineers &
Programmers

SQL-H SQL SQL, NOSQL

DATA PLATFORM

HADOOP OR
TERADATA

INTEGRATED DATA
WAREHOUSE

TERADATA
DATABASE

ASTER
DATABASE

DISCOVERY
PLATFORM

COMPUTE
CLUSTERS

SAS, PYTHON,
R, PERL, RUBY…

OTHER
DATABASES

ORACLE,
MONGODB, ETC

SQL VARIOUS

 TERADATA OR ASTER DATABASE

TERADATA QUERYGRID

PUSH DOWN / REMOTE PROCESSING

Remote Processing On Hadoop

´ Query through
Teradata

´ Leaves of query plan
sent to SQL-on-Hadoop
engine

´ Results returned to
Teradata

´ Additional query
processing done in
Teradata

´ Final results sent back
to application/user

´ Teradata 15.0

´ Bi-directional data movement
´ Read and write data to Hadoop

´ Create new table in Hadoop or insert records

´ Query push-down
´ Execute query on Hadoop

´ Qualify rows and columns to reduce data returned

´ Easy configuration and simplified queries
´ Create “Hadoop server” definition once

´ Use @foreign_server name to access Hadoop

Teradata QueryGrid Teradata-Hadoop

History of Presto

FALL 2012
6 developers
start Presto

development

FALL 2014
88 releases

41 contributors
3943 commits

SPRING 2015
Teradata

provides first
commercial
support for

Presto +
roadmap

SPRING 2013
Presto rolled

out within
Facebook

FALL 2013
Facebook

open
sources
Presto

FALL 2008
Facebook

open
sources Hive

Hive

Reduce Reduce

Map Map

Reduce Reduce

Map Map

Disk

Disk

Disk

Wait
between

stages

Write to Disk
•  Fault Tolerance

•  IO Overhead

Presto

Task Task

Task Task

Task

Task Task

All stages are pipelined
•  Reduced wait time

•  No Fault Tolerance

Memory-to-memory
Data transfer

•  No disc IO

•  Data chunk must

 fit in memory

´ Uses Hive metastore

´ Bytecode query compilation

´ Approximate queries
´ Return X% sample rows

´ Limitations
´ Manual join SQL ordering

´ Non-equi joins not supported

´ Not YARN enabled

´ No Avro support

´ No spill-to-disk

´ Written in Java

´ 100% ANSI SQL goal

´ Numerous built-in functions

´ Window functions

´ Array/map support

´ Plug-in architecture
´ Join across data stores

´ Hive, Cassandra, Kafka, MySQL

´ Amazon S3

Presto at a Glance

Presto Pipeline Architecture

Data stream API

Worker

Data stream API

Worker

Coordinator Data Location
API

Metadata
API

Parser/
analyzer

Planner Scheduler

Worker

Client

Presto Connectors

Client

Presto worker Presto worker Presto worker Presto worker

Presto Coordinator

Github: Presto Plug-in Connectors

´ Hive tables and HCatalog

´ Apache Cassandra

´ Apache Kafka

´ Kafka topics = Presto tables, messages = rows

´ MySQL

´ Single node access only -- no sharding

´ Postgres

´ Single node access only

´ HBase

´ not released

Cloudera Impala

9/28/15 SQL-on-Hadoop Tutorial

87

88

Query Executor!

SQL App!

ODBC!
Hive Metastore! HDFS NameNode! Statestore!

Query Planner!

Query Coordinator!

HDFS DN! HBase!

Impalad

HDFS DN! HBase!

Impalad

HDFS DN! HBase!

Impalad

Catalog!

Query Executor!

Query Planner! Query Planner!

Query Coordinator! Query Coordinator!

Query Executor!

SQL request

Plan Fragments

Results

Query execution at the high level 88

89

HashJoin Scan: t1

Scan: t3

Scan: t2

HashJoin

TopN

Pre-Agg

MergeAgg

TopN

Broadcast

Merge

hash t2.id hash t1.id1

hash
t1.custid

at HDFS DN

at HBase RS

at coordinator

HashJoin

Scan: t1

Scan: t3

Scan: t2

HashJoin

TopN

Agg

Single-Node
Plan

Query Planning: Distributed Plans

´ Written in C++ for minimal cycle and memory overhead
´ Leverages decades of parallel DB research
´ Partitioned parallelism
´ Pipelined relational operators
´ Batch-at-a-time runtime

´ Focussed on speed and efficiency
´ Intrinsics/machine code for text parsing, hashing, etc.
´ Runtime code generation with LLVM

90 Execution Engine

´ Uses llvm to jit-compile the runtime-intensive parts of
a query

´ Effect the same as custom-coding a query:

´ Remove branches, unroll loops

´ Propagate constants, offsets, pointers, etc.

´  Inline function calls

´ Optimized execution for modern CPUs (instruction
pipelines)

91 Runtime Code Generation

92

interpreted codegen’d

IntVal	 my_func(const	 IntVal&	 v1,	 const	 IntVal&	 v2)	 {	
	 	 return	 IntVal(v1.val	 *	 7	 /	 v2.val);	
}	

SELECT	 my_func(col1	 +	 10,	 col2)	 FROM	 ...	

my_fu
nc

col
2

+

10 col
1

function
pointer

function
pointer

function
pointer

function
pointer

(col1 + 10) * 7 / col2

function
pointer

Runtime Code Generation — Example

93

10 node cluster (12 disks / 48GB RAM / 8 cores per node)
~40 GB / ~60M row Avro dataset

Impala Runtime Code Generation - Performance

Codegen is not the panacea! 94

TPC-DS 500GB,10-node cluster TPC-H 300GB,10-node cluster

´ Admission control and Yarn-based RM cater to different workloads

´ Use admission control for:

§  Low-latency, high-throughput workloads

§  Mostly running Impala, or resource partitioning is feasible

´ Use Llama/Yarn for:

§  Mixed workloads (Impala, MR, Spark, …) and resource partitioning is
impractical

§  Latency and throughput SLAs are relatively relaxed

Resource Management in Impala 95

96

´  Nested data: Structs, arrays, maps in Parquet, Avro, JSON, …
´ Natural extension of SQL: expose nested structures as tables

´ No limitation on nesting levels or number of nested fields in single query

´  Multithreaded execution past scan operator
´  Resource management and admission control
´  low-latency, high-throughput mixed workloads without resource

partitioning

´  More SQL: ROLLUP/GROUPING SETS, INTERSECT/MINUS, MERGE
´  Improved query planning, using statistics
´  Physical tuning

Roadmap: Impala 2.3+

Ibis: Scaling the Python Data Experience

Target user:
Data scientists and data engineers (“Python data users”)

Goals:

Mirror single-node Python experience, maximize productivity
Complete support for SQL engines with Pandas-like API (same
designer)
High-performance Python user-defined functions
Integration with Python data ecosystem / libraries

97

http://www.ibis-project.org/

Ibis/Impala Joint Roadmap

•  More natural data modeling
•  Complex types support

•  Integration with full Python data ecosystem
•  Advanced analytics + machine learning
•  Enable use of performance computing tools

•  User extensibility with native performance
•  In-memory columnar format
•  Python-to-LLVM IR compilation

•  Workflow and usability tools

99

´ Code at github (https://github.com/cloudera/Impala/)

´ Impala Developer Docker Images & Chef scripts

´ https://registry.hub.docker.com/u/cloudera/impala-dev/

´ Minimal (7GB) — ready to compile, latest code

´ Default (33GB) — includes test data, e.g. TPC-H

´ Shout out to Spyros Blanas (Ohio State)
´ http://web.cse.ohio-state.edu/~sblanas/5242/

´ Impala JIRAs, ramp-up tasks

100 Academic Challenge

IBM Big SQL

9/28/15 SQL-on-Hadoop Tutorial

101

´  Head (coordinator) node
´  Compiles and optimizes the query

´  Coordinates the execution of the query

´  Big SQL worker processes reside on compute nodes (some or all)

´  Worker nodes stream data between each other as needed

Mgmt Node

Big SQL

Mgmt Node

Hive Metastore

Mgmt Node

Name Node

Mgmt Node

Job Tracker •••

Compute Node

Task
Tracker Data Node

Compute Node

Task
Tracker Data Node

Compute Node

Task
Tracker Data Node

Compute Node

Task
Tracker Data Node •••

Big
SQL

Big
SQL

Big
SQL

Big
SQL

HDFS

102 Big SQL – Architecture

´  For common table formats a native I/O engine is utilized

´  e.g. delimited, RC, SEQ, Parquet, …

´  For all others, a java I/O engine is used

´ Maximizes compatibility with existing tables

´ Allows for custom file formats and SerDe's

´  All Big SQL built-in functions are native code

´  Customer built UDF's can be developed in C++ or Java

Mgmt Node

Big SQL

Compute Node

Task
Tracker Data Node Big

SQL

Big SQL Worker

Native I/O
Engine

Java I/O
Engine

Runtime
Java UDFs

Native UDFs

103

103 Big SQL – Architecture (cont.)

´ All data is Hadoop data
´  In files in HDFS

´ SEQ, ORC, delimited, Parquet …

´ Never need to copy data to a proprietary representation

´ All data is catalog-ed in the Hive metastore
´  It is the Hadoop catalog

´  It is flexible and extensible

104

104 Big SQL works with Hadoop

´  The scheduler is the main RDBMS↔Hadoop service interface

´  Interfaces with Hive metastore for table metadata
´  SQL compiler ask it for some "hadoop" metadata, such as partitioning columns

´  Acts like the MapReduce job tracker for Big SQL
´ Big SQL provides query predicates for scheduler to perform partition elimination
´ Determines splits for each “table” involved in the query
´  Schedules splits on available Big SQL nodes

(with best effort data locality)
´ Decides which I/O library to use and serves

 work (splits) to them
´ Coordinates “commits” after INSERTs

 Management Node

Big SQL
Master Node

Big SQL
Scheduler

DDL
FMP

UDF
FMP Mgmt Node

Database
Service
Hive

Metastore

Big SQL
Worker Node

Java
I/O

FMP

Native
I/O

FMP

HDFS Data
Node

 MRTask
Tracker UDF

FMP

105 Scheduler Service

Query Rewrite

´  There are many ways to express the same query

´  Query generators often produce suboptimal queries and don't permit "hand
optimization"

´  Complex queries often result in redundancy, especially with views

´  For large data volumes optimal access plans more crucial as penalty for poor
planning is greater

select sum(l_extendedprice) / 7.0
avg_yearly
from tpcd.lineitem, tpcd.part
where p_partkey = l_partkey
 and p_brand = 'Brand#23'
 and p_container = 'MED BOX'
 and l_quantity < (select 0.2 *
 avg(l_quantity) from
tpcd.lineitem
 where l_partkey = p_partkey);

select sum(l_extendedprice) / 7.0 as avg_yearly
 from temp (l_quantity, avgquantity,
l_extendeprice) as
 (select l_quantity, avg(l_quantity) over
 (partition by l_partkey)
 as avgquantity, l_extenedprice
 from tpcd.lineitem, tpcd.part
 where p_partkey = l_partkey
 and p_brand = 'BRAND#23'
 and p_container = 'MED BOX')
 where l_quantity < 0.2 * avgquantity

•  Query correlation eliminated
•  Lineitem table accessed only once
•  Execution time reduced in half!

106

Cost-based Optimization

 |
 2.66667e-08
 HSJOIN
 (7)
 1.1218e+06
 8351
 /--------+--------\
 5.30119e+08 3.75e+07
 BTQ NLJOIN
 (8) (11)
 948130 146345
 7291 1060
 | /----+----\
 5.76923e+08 1 3.75e+07
 LTQ GRPBY FILTER
 (9) (12) (20)
 855793 114241 126068
 7291 1060 1060
 | | |
 5.76923e+08 13 7.5e+07
 TBSCAN TBSCAN BTQ
 (10) (13) (21)
 802209 114241 117135
 7291 1060 1060
 | | |
 7.5e+09 13 5.76923e+06
 TABLE: TPCH5TB_PARQ TEMP LTQ
 ORDERS (14) (22)
 Q1 114241 108879
 1060 1060
 | |
 13 5.76923e+06
 DTQ TBSCAN
 (15) (23)
 114241 108325
 1060 1060
 | |
 1 7.5e+08
 GRPBY TABLE: TPCH5TB_PARQ
 (16) CUSTOMER
 114241 Q5
 1060
 |
 1
 LTQ
 (17)
 114241
 1060
 |
 1
 GRPBY
 (18)
 114241
 1060
 |
 5.24479e+06
 TBSCAN
 (19)
 113931
 1060
 |
 7.5e+08
 TABLE: TPCH5TB_PARQ
 CUSTOMER
 Q2

 Few extensions required to the Cost Model
 Scan operator cost model extended to evaluate
cost of reading from Hadoop

  # of files, size of files, # of partitions, # of
nodes

  Data not hash partitioned on a particular columns
(aka “Scattered partitioned”)
 New parallel join strategy

 Every node read data from HDFS, instead of
one reading and broadcasting

 Optimizer now knows in which subset of nodes the
data resides => better costing!
 Sophisticated statistics for cardinality estimation

107

Statistics
´  Big SQL utilizes Hive statistics collection with

some extensions:

´ Additional support for column groups,
histograms and frequent values

´ Automatic determination of partitions
that require statistics collection vs.
explicit

´ Partitioned tables: added table-level
versions of NDV, Min, Max, Null count,
Average column length

´ Hive catalogs as well as database
engine catalogs are also populated

´ We are restructuring the relevant code
for submission back to Hive

´  Capability for statistic fabrication if no stats
available at compile time

Table statistics
• Cardinality (count)
• Number of Files
• Total File Size

Column statistics
• Minimum value (all types)
• Maximum value (all types)
• Cardinality (non-nulls)
• Distribution (Number of Distinct Values
NDV)

• Number of null values
• Average Length of the column value (all
types)

• Histogram - Number of buckets configurable
• Frequent Values (MFV) – Number
configurable

Column group statistics

108

Big SQL supports HBase tables

´  Big SQL with HBase – basic operations

–  Create tables and views

–  LOAD / INSERT data

–  Query data with full SQL breadth

´  HBase-specific design points

´ Column mapping

´ Dense / composite columns

–  FORCE KEY UNIQUE option

–  Secondary indexes

– 

109

Big SQL works under YARN
´  Big SQL integrates with YARN via the

Slider project

´  YARN chooses suitable hosts for Big SQL
worker nodes

´  Big SQL resources are accounted for by
YARN

´  Size of the Big SQL cluster may
dynamically grow or shrink as needed

´ Configured by user (not by installation
default)

´ More Big SQL workers are added when
more resources are needed

´ When demand wears off, Big SQL workers
are shut down

Data Management

SPA
RK

H
ive

Pig

Big
 SQ

L

Data Access

HDFS

M
a

p
Re

d
uc

e

YARN

110

Summary

´  Big SQL provides rich, robust, standards-based SQL support for data stored in HDFS and HBase

´  Uses IBM common client ODBC/JDBC drivers

´  Big SQL fully integrates with SQL applications and tools

´  Existing queries run with no or few modifications*

´  Existing JDBC and ODBC compliant tools can be leveraged

´  Big SQL provides faster and more reliable performance

´  Big SQL uses more efficient access paths to the data

´  Big SQL is optimized to more efficiently move data over the network

´  Big SQL is capable of executing all 22 TPC-H and all 99 TPC-DS queries without modification

´  Big SQL provides and enterprise grade data management

´  Security, Auditing, workload management …

111

SparkSQL

9/28/15 SQL-on-Hadoop Tutorial

112

From:

What is so great about Spark? 113

´  Distributed data analytics engine, generalizing Map Reduce

´  Core engine, with streaming, SQL, machine learning, and graph processing modules

114 OK, but what exactly is Spark?

´ RDDs

´ Distributed collection of objects

´ Can be cached in memory

´ Built via parallel transformations (map, filter, …)
´ Automatically rebuilt on failure based on lineage

´ DAGs of RDDs and Transformations can be (lazily)
executed via actions
´ Examples: Export to HDFS, count number of objects

Spark Core:
RDDs, Transformations & Actions

115

9/28/15 SQL-on-Hadoop Tutorial

116 Spark’s DAG Execution

´ Building a real-world big data application without and with Spark:

…
HDFS
read

HDFS
writeET

L HDFS
read

HDFS
writetra

in HDFS
read

HDFS
writequ

er
y

HDFS

HDFS
read ET

L
tra

in
qu

er
y

With Spark:

Interactive"
analysis

Why Application Developers love Spark 117

Raw JSON Tweets

SQL
Machine
Learning

Streaming

An Example App 118

import	 org.apache.spark.sql._	 	
val	 ctx	 =	 new	 org.apache.spark.sql.SQLContext(sc)	 	
val	 tweets	 =	 sc.textFile("hdfs:/twitter")	 	
val	 tweetTable	 =	 JsonTable.fromRDD(sqlContext,	 tweets,	 Some(0.1))	 	
tweetTable.registerAsTable("tweetTable")	 	
	
ctx.sql("SELECT	 text	 FROM	 tweetTable	 LIMIT	 5").collect.foreach(println)	 	
ctx.sql("SELECT	 lang,	 COUNT(*)	 AS	 cnt	 FROM	 tweetTable	 \	
	 	 GROUP	 BY	 lang	 ORDER	 BY	 cnt	 DESC	 LIMIT	 10").collect.foreach(println)	 	
val	 texts	 =	 sql("SELECT	 text	 FROM	 tweetTable").map(_.head.toString)	 	
	
def	 featurize(str:	 String):	 Vector	 =	 {	 ...	 }	 	
val	 vectors	 =	 texts.map(featurize).cache()	 	
val	 model	 =	 KMeans.train(vectors,	 10,	 10)	 	
	
sc.makeRDD(model.clusterCenters,	 10).saveAsObjectFile("hdfs:/model")	
val	 ssc	 =	 new	 StreamingContext(new	 SparkConf(),	 Seconds(1))	 	
	 	 	
val	 model	 =	 new	 KMeansModel(
	 	 	 	 ssc.sparkContext.objectFile(modelFile).collect())	
	
//	 Streaming	
val	 tweets	 =	 TwitterUtils.createStream(ssc,	 /*	 auth	 */)	 	
val	 statuses	 =	 tweets.map(_.getText)	 	
val	 filteredTweets	 =	 statuses.filter	 {	 	
	 	 	 	 t	 =>	 model.predict(featurize(t))	 ==	 clusterNumber	 	
}	 	
filteredTweets.print()	 	
	 	 	
ssc.start()	
	 	

Fi
ts

 o
n

o
ne

 s
lid

e

119

9/28/15 SQL-on-Hadoop Tutorial

120

´ SQL, SQL, SQL, …

´ Databricks says that 100% of their customers
use some SQL

´ Schema is very useful

´ Even in complex pipelines that process a lot
of un/semi-structured data

´ Separation of logical from physical plan is critical
for performance and scalability

Why SparkSQL?

Plan Optimization & Execution

121

SQL AST

DataFrame

Unresolved
Logical Plan Logical Plan Optimized

Logical Plan RDDs
Selected
Physical

Plan

Analysis Logical
Optimization

Physical
Planning

C
os

t M
od

el

Physical
Plans

Code
Generation

Catalog

DataFrames and SQL share the same optimization/execution pipeline

122

1.  A distributed collection of rows organized into
named columns

2.  An abstraction for selecting, filtering, aggregating
and plotting structured data (cf. R, Pandas, Ibis)

DataFrame

Catalyst Optimizer: Tree Transformations

´  Developers express tree transformations as PartialFunction[TreeType,TreeType]

1.  If the function does apply to an operator, that operator is replaced with the result.

2.  When the function does not apply to an operator, that operator is left unchanged.

3.  The transformation is applied recursively to all children.

Prior Work: Optimizer Generators

´ Volcano / Cascades:

•  Create a custom language for expressing rules that rewrite trees of
relational operators.

•  Build a compiler that generates executable code for these rules.

An Example Catalyst Transformation

1
2
5

1.  Find filters on top of projections.

2.  Check that the filter can be
evaluated without the result of the
project.

3.  If so, switch the operators.

Project
name

Project
id,name

Filter
id = 1

People

Original
Plan

Project
name

Project
id,name

Filter
id = 1

People

Filter
Push-Down

Filter Push Down Transformation

val	 newPlan	 =	 queryPlan	 transform	 {	
	 case	 f	 @	 Filter(_,	 p	 @	 Project(_,	 grandChild))	 	
	 	 	 if(f.references	 subsetOf	 grandChild.output)	 =>	
	 p.copy(child	 =	 f.copy(child	 =	 grandChild)	

}	

Community-Contributed Transformations

127

110 line patch took this user’s query from
“never finishing” to 200s.

Project Tungsten: Getting Spark to Run
Well on the JVM

´ Overcoming JVM limitations:

•  Memory Management and Binary Processing:
leveraging application semantics to manage
memory explicitly and eliminate the overhead of
JVM object model and garbage collection

•  Cache-aware computation: algorithms and data
structures to exploit memory hierarchy

•  Code generation: using code generation to exploit
modern compilers and CPUs

9/28/15 SQL-on-Hadoop Tutorial

129

Use sun.misc.Unsafe

´ JVM internal API

´ Can manipulate memory without safety checks

9/28/15 SQL-on-Hadoop Tutorial

131

´ Null bits

´ Inline fixed-length values

´ Align on 8-byte word boundaries

Apache Phoenix

9/28/15 SQL-on-Hadoop Tutorial

132

9/28/15 SQL-on-Hadoop Tutorial

133

´ SQL	 compiler	 and	 execu2on	 engine	 for	 HBase	 	
´ Query	 engine	 transforms	 SQL	 into	 na2ve	 HBase	 APIs:	 put,	 delete,	
parallel	 scans	 (instead	 of,	 say,	 MapReduce)	

´ Supports	 features	 not	 provided	 by	 HBase:	 Secondary	 Indexing,	
Mul2-‐tenancy,	 simple	 Hash	 Join,	 etc.	

The Phoenix Approach

9/28/15 SQL-on-Hadoop Tutorial

134 Phoenix Architecture

Open (Research) Challenges

9/28/15 SQL-on-Hadoop Tutorial

135

´  Cost-based optimizer relies on

´  Statistics over base relations

´  Formulas for cost estimation

´  Rules for plan enumeration

´  Problems:

´  Stats not reliable, do not own the data

´  Prominent use of UDFs

´  Independence assumption between predicates do not hold

´  More nested data, harder to estimate selectivities

´  Bad plans over big data may run “forever”

Defer more cost-based decisions to run-time; robust, adaptive
query optimization

Challenge 1: Query optimization

9/28/15 SQL-on-Hadoop Tutorial

137

´ No single framework owns
the data!

´ Multiple frameworks, with
different resource
requirements

HDFS, S3

Hadoop Yarn

Spark/MR/Tez/..

Streaming SQL Graph Machine
learning

ETL and
batch

processing

´ How to share the data?

´ How to share resources?

´ How to work together
seamlessly?

Challenge 2: Multi-framework environment

´ HDFS is a problem for transactional workloads
´ Workarounds do not lend itself to high-performance OLAP

´ Object-stores

´ Interesting combinations are emerging
´ Hive LLAP + Phoenix, Splice Machine + Spark

´ Need more tightly integrated solutions

´ Need an updatable, fast, distributed file system

9/28/15 SQL-on-Hadoop Tutorial

138 Challenge 3: Transactions and
analytics in one system

References

´  http://www.slideshare.net/enissoz/hbase-and-hdfs-understanding-filesystem-usage

´  https://www.mapr.com/blog/in-depth-look-hbase-architecture

´  Apache Drill. http://drill.apache.org/.

´  Apache Phoenix. http://phoenix.apache.org/.

´  Hive on spark. https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark .

´  Splice machine. http://www.splicemachine.com/.

´  Teradata query grid. http://www.teradata.com/Teradata- QueryGrid/
#tabbable=0&tab1=0&tab2=0.

´  M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching, A. Choi, J. Erickson, M. Grund, D.
Hecht, M. Jacobs, I. Joshi, L. Kuff, D. Kumar, A. Leblang, N. Li, I. Pandis, H. Robinson, D. Rorke, S.
Rus, J. Russell, D. Tsirogiannis, S. Wanderman-Milne, and M. Yoder. “Impala: A Modern, Open-
Source SQL Engine for Hadoop.” In Proc. CIDR, 2015.

´  Y. Huai, A. Chauhan, A. Gates, G. Hagleitner, E. N. Hanson, O. O'Malley, J. Pandey, Y. Yuan, R.
Lee, and X. Zhang. “Major technical advancements in apache hive.” In Proc. SIGMOD, 2014.

9/28/15 SQL-on-Hadoop Tutorial

139

References (cont.)

´  A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis. “Weaving Relations for Cache
Performance.” In Proc. of the 27th International Conference on Very Large Data Bases, 2001.

´  Y. He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang, and Z. Xu. “RCFile: A fast and space-efficient
data placement structure in MapReduce-based warehouse systems.” In Proc. of ICDE, 2011.

´  H. Lim, H. Herodotou, and S. Babu. “Stubby: a transformation-based optimizer for MapReduce
workflows.” PVLDB, 2012.

´  T. Neumann. “Efficiently compiling efficient query plans for modern hardware.” PVLDB, 2011.

´  D. Simmen, E. Shekita, and T. Malkemus. “Fundamental techniques for order optimization.” In
Proc. of ACM SIGMOD, 1996.

´  A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Anthony, H. Liu, and R. Murthy.”
Hive - A Petabyte Scale Data Warehouse Using Hadoop.” In ICDE, 2010.

´  T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner, A. Zeier, and J. Schaffner. “SIMD-scan: ultra fast
in- memory table scan using on-chip vector processing units.” PVLDB, 2, 2009.

9/28/15 SQL-on-Hadoop Tutorial

140

References (cont.)

´  V. Raman, G. Attaluri, R. Barber, N. Chainani, D. Kalmuk, V. KulandaiSamy, J. Leenstra, S. Light-
stone, S. Liu, G. M. Lohman, T. Malkemus, R. Mueller, I. Pandis, B. Schiefer, D. Sharpe, R. Sidle, A.
Storm, and L. Zhang. “DB2 with BLU Acceleration: So much more than just a column store.”
PVLDB, 6, 2013.

´  A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi, A. Rasin, and A. Silberschatz. “HadoopDB: An
Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads.” PVLDB,
2009.

´  A. Abouzied, D. J. Abadi, and A. Silberschatz. “Invisible loading: Access-driven data transfer
from raw files into database systems.” In EDBT, 2013.

´  M. Amburst, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan, M. J. Franklin, A.
Ghodsi, and M. Zaharia. “Spark SQL: Relational data processing in Spark.” In ACM SIGMOD,
2015.

´  V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves, J. Lowe, H.
Shah, S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler.
Apache Hadoop YARN: Yet another resource negotiator. In SOCC, 2013.

9/28/15 SQL-on-Hadoop Tutorial

141

References (cont.)

´  K. Bajda-Pawlikowski, D. J. Abadi, A. Silberschatz, and E. Paulson. “Efficient processing of data
warehousing queries in a split execution environment.” In ACM SIGMOD, 2011.

´  P. Boncz. Vortex: Vectorwise goes Hadoop.
http://databasearchitects.blogspot.com/2014/05/vectorwise- goes-hadoop.html.

´  L. Chang, Z. Wang, T. Ma, L. Jian, L. Ma, A. Goldshuv, L. Lonergan, J. Cohen, C. Welton,
G. Sherry, and M. Bhandarkar. “HAWQ: A massively parallel processing SQL engine in hadoop.”
In ACM SIGMOD, 2014.

´  G. Graefe. “Encapsulation of parallelism in the Volcano query processing system.” In ACM
SIGMOD, 1990.

´  S. Gray, F. Özcan, H. Pereyra, B. van der Linden, and A. Zubiri. “IBM Big SQL 3.0: SQL-on-Hadoop
without compromise.” http://public.dhe.ibm.com/common/ ssi/ecm/en/sww14019usen/
SWW14019USEN.PDF, 2014.

´  F.Özcan, D. Hoa, K. S. Beyer, A. Balmin, C. J. Liu, and Y. Li. “Emerging trends in the enterprise
data analytics: Connecting Hadoop and DB2 warehouse.” In ACM SIGMOD, 2011.

9/28/15 SQL-on-Hadoop Tutorial

142

References (cont.)

´  S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton, and T. Vassilakis. “Dremel:
Interactive analysis of web-scale datasets.” PVLDB, 2010.

´  S. Padmanabhan, T. Malkemus, R. C. Agarwal, and A. Jhingran. “Block oriented processing of
relational database operations in modern computer architectures.” In ICDE, 2001.

´  B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy, and C. Curino. “Apache Tez: A unifying
framework for modeling and building data processing applications.” In ACM SIGMOD, 2015.

´  P. Seshadri, H. Pirahesh, and T. Y. C. Leung. “Complex query decorrelation.” In ICDE, 1996.

´  A. Floratou, U. F. Minhas, and F. Özcan. “SQL-on- Hadoop: Full circle back to shared-nothing
database architectures.” PVLDB 7(12), 2014.

´  M. Traverso. Presto: Interacting with petabytes of data at Facebook. https://
www.facebook.com/notes/facebook- engineering/presto-interacting-with-petabytes-of-data-
at-facebook/10151786197628920.

´  S. Wanderman-Milne and N. Li. Runtime code generation in Cloudera Impala. IEEE Data Eng.
Bull., 2014.

9/28/15 SQL-on-Hadoop Tutorial

143

References (cont.)

´  R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica. “Shark: SQL and rich
analytics at scale.” In ACM SIGMOD, 2013.

´  M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. “Spark: Cluster computing
with working sets.” In HotCloud, 2010.

´  C. Zuzarte, H. Pirahesh, W. Ma, Q. Cheng, L. Liu, and K. Wong. “WinMagic : Subquery
elimination using window aggregation.” In ACM SIGMOD, 2003.

´  F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes,
and R. Gruber. “Bigtable: A Distributed Storage System for Structured Data.”, In OSDI 2006

´  B. Chattopadhyay, L. Lin, W. Liu, S. Mittal, P. Aragonda, V. Lychagina, Y. Kwon, and M. Wong.
“Tenzing: A SQL Implementation on the MapReduce Framework.” In VLDB 2011.

´  T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and N. Koudas. “MRShare: Sharing Across Multiple
Queries in MapReduce.” In VLDB 2010.

9/28/15 SQL-on-Hadoop Tutorial

144

References (cont.)

´  G. Wang and C.-Y. Chan. “Multi-Query Optimization in MapReduce Framework.” In VLDB, 2013.

´  F. Afrati and J. Ullman. “Optimizing Multiway Joins in a Map-Reduce Environment.” In TKDE
2011.

´  Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. “SkewTune: Mitigating Skew in MapReduce
Applications.” In SIGMOD 2012.

´  M. Eltabakh, F. Özcan, Y. Sismanis, P. J. Haas, H. Pirahesh, and J. Vondrak, “Eagle-eyed
elephant: split-oriented indexing in Hadoop”, in EDBT 2014.

´  M. Eltabakh, Y. Tian, F. Özcan, R. Gemulla, A. Krettek, and J. McPherson, “CoHadoop: Flexible
Data Placement and Its Exploitation in Hadoop”, in PVLDB 4(9), 2011.

´  J. Shi, Y. Qiu, U. F. Minhas, L. Jiao, C. Wang, B. Reinwald, and F. Özcan, “Clash of the Titans:
MapReduce vs. Spark for Large Scale Data Analytics” in PVLDB 8(13), 2015

´  J. Dittrich, J-A. Quiane-Ruiz, A. Jindal, Y. Kargin, V. Setty, and J. Schad, “Hadoop++: Making a
Yellos Elephant Run Like a Cheetah (without it even noticing)”, in PVLDB 3(1-2), 2010.

9/28/15 SQL-on-Hadoop Tutorial

145

References (cont.)

´  D. Jiang, B. C. Ooi, L. Shi, and S. Wu, “The Performance of MapReduce: An In-depth Study”, in
PVLDB 3(1-2), 2010.

´  D. J. DeWitt, R. V. Nehme, S. Shankar, J. Aguilar-Saborit, A. Avanes, M. Flasza, and J. Gramling,
“Split Query Processing in Polybase”, in SIGMOD 2013.

´  M. Stonebraker, D. J. Abadi, D. J. DeWitt, S. Madden, E. Paulson, A. Pavlo, and A. Rasin,
“MapReduce and parallel DBMSs: Friends or Foes?” CACM, 53(1):64–71, 2010.

´  A. Floratou, J. M. Patel, E. J. Shekita, and S. Tata, “Column-oriented Storage Techniques for
MapReduce”, in PVLDB, 4(7):419–429, 2011

´  S. Harris, A. Sundararajan, E. Branish, and K. Chen, “Blistering Fast SQL Access to Hadoop using
IBM BigInsights 3.0 with Big SQL 3.0”

´  S. Blanas and et al., “A comparison of join algorithms for log processing in mapreduce”, in
SIGMOD 2010.

9/28/15 SQL-on-Hadoop Tutorial

146

References (cont.)

´  HDFS caching, http://hadoop.apache.org/docs/current/hadoopproject-dist/hadoop-hdfs/
CentralizedCacheManagement.html.

´  S. Babu and H. Herodotou, “Massively Parallel Databases and MapReduce Systems”, in
Foundations and Trends in Databases 5(1), 2013.

´  N. Bruno, Y. Kwon, and M-C Wu, “Advanced Join Strategies for Large-Scale Distributed
Computation”, in PVLDB 7(13), 2014

´  K. Karanasos, A. Balmin, M. Kutsch, F. Özcan, V. Ercegovac, C. Xia, and J. Jackson,
“Dynamically optimizing queries over large scale data platforms”, in SIGMOD 2014

´  J. Dean, and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters”, in
OSDI 2004.

9/28/15 SQL-on-Hadoop Tutorial

147

Thank	 you!	

