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Why SQL-on-Hadoop? 

´ People need to process data in parallel 

´ Hadoop is by far the leading open source parallel data 
processing platform 

´ Low costs of HDFS results in heavy usage 
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Lots of data in Hadoop with appetite to process it 



MapReduce is not the answer 

´ MapReduce is a powerful primitive to do many kinds of 
parallel data processing 

´ BUT 
´ Little control of data flow 

´ Fault tolerance guarantees not always necessary 

´ Simplicity leads to inefficiencies 

´ Does not interface with existing analysis software 

´  Industry has existing training in SQL 
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SQL interface for Hadoop critical for mass adoption 



´ Decades of research in parallel database systems 
´ Efficient data flow 

´ Load balancing in the face of skew 

´ Query optimization 

´ Vectorized processing 

´ Dynamic compilation of query operators 

´ Co-processing of queries 
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Massive talent war between SQL-on-Hadoop 
companies for members of database community 

The database community knows how 
to process data 



SQL-on-Hadoop is not a direct 
implementation of parallel DBMSs 

´ Little control of storage 
´ Most deployments must be over HDFS 

´ Append-only file system 

´ Must support many different storage formats 

´ Avro, Parquet, RCFiles, ORC, Sequence Files 

´ Little control of metadata management 
´ Optimizer may have limited access to statistics 

´ Little control of resource management 
´ YARN still in its infancy 
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SQL-on-Hadoop is not a direct 
implementation of parallel DBMSs 

´ Hadoop often used a data dump (swamp?) 
´ Data often unclean, irregular, and unreliable 

´ Data not necessarily relational 
´  HDFS does not enforce structure in the data 

´ Nested data stored as JSON extremely popular 

´ Scale larger than previous generation parallel database 
systems 
´  Fault tolerance vs. query performance 

´ Most Hadoop components written in Java 

´ Want to play nicely with the entire Hadoop ecosystem 9/28/15 SQL-on-Hadoop Tutorial 
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Outline of Tutorial 

´ This session [13:30-15:00] 
´ SQL-on-Hadoop Technologies 

´ Storage 

´ Run-time engine 

´ Query optimization 

´ Q&A 
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´ Second Session [15:30-17:00] 
´ SQL-on-Hadoop examples 

´ HadoopDB/Hadapt 

´ Presto 

´ Impala 

´ BigSQL 

´ SparkSQL 

´ Phoenix/Spice Machine 

´ Research directions 

´ Q&A 



Storage 
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Quick Look at HDFS 
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… 

NameNode 

DataNode DataNode DataNode 



´ Good for 
´ Storing large files 

´ Write once and read many times 

´ “Cheap” commodity hardware 

´ Not good for 
´ Low-latency reads 

´ Short-circuit reads and HDFS caching help 

´ Large amounts of small files 

´ Multiple writers 

9/28/15 SQL-on-Hadoop Tutorial 

11 HDFS is 



In-situ Data Processing 

´ HDFS as the data dump  
´ Store the data first, figure out what to do later 

´ Most data arrive in text format 
´ Transform, cleanse the data 

´ Create data marts in columnar formats 

´ Lost of nested, JSON data 

´ Some SQL in data transformations, but mostly other 
languages, such as Pig, Cascading, etc.. 

´ Columnar formats are good for analytics 
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´ Most SQL-on-Hadoop systems do not control or own the data 
´ Hive, Impala, Presto, Big SQL, Spark SQL, Drill 

 

´ Other SQL-on-Hadoop systems tolerate HDFS data, but work 
better with their own proprietary storage 
´ HadoopDB/Hadapt 

´ HAWQ,  Actian Vortex, and HP Vertica 
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´ Only support native Hadoop formats with open-
source reader/writers 

´ Any Hadoop tool can generate their data 
´ Pig, Cascading and other ETL tools 

´ They are more of a query processor than a database 

´ Indexing is a challenge !! 

´ No co-location of multiple tables 

´ Due to HDFS 
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´ Almost all exploit some existing database systems 

´ They store their own binary format on HDFS 

´ Hadapt stores the data in a single node database, 
like postgres 
´ Can exploit Postgres indexes 

´ HAWQ, Actian, HP Vertica, and Hadapt all control 
how tables are partitioned, and can support co-
located joins 
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´ CSV files are most common for ETL-like workloads 

´ Lots of nested and complex data 
´ Arrays, structs, maps, collections 

´ Two major columnar formats 
´ ORCFile  

´ Parquet 

´ Data serialization 
´ JSON and Avro 

´ Protocol buffers and Thrift 
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Parquet 

§ PAX format, supporting nested data 

§  Idea came from the Google‘s Dremel System 

§ Major contributors: Twitter & Cloudera 

§ Provides dictionary encoding and several compressions 

§ Preffered format for Impala, IBM Big SQL, and Drill 

§ Can use Thrift or Avro to describe the schema 

Nested data 

§ A natural schema 
§ Flexible 
§  Less duplication applying 

denormalization 

Columnar storage 
§ Fast compression 
§ Schema projection 
§ Efficient encoding 



Parquet, cont. 
´  A table with N columns is split 

into M row groups.  

´  The file metadata contains 
the locations of all the 
column metadata start 
locations.  

´  Metadata is written after the 
data to allow for single pass 
writing. 

´  There are three types of 
metadata: file metadata, 
column (chunk) metadata 
and page header metadata.  

´  Row group metadata 
includes 

´  Min-max values for skipping 
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´ Second generation, following RC file 

´ PAX formats with all data in a single file 

´ Hortonworks is the major contributor, together with Microsoft 

´ Preferred format for Hive, and Presto 

´ Supports 
´ Dictionary encoding 

´  Fast compression 

´ File, and stripe level metadata 

´ Stripe indexing for skipping 

´ Now metadata even includes bloom filters for point query lookups 
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ORCFile Layout 



´  No updates in HDFS 

´  Appends to HDFS files are supported, 
but not clear how much they are 
used in production 

´  Updates are collected in delta files 

´  At the time of read delta and main 
files are merged 

´  Special inputFormats 

´  Lazy compaction to merge delta 
files and main files  
´ When delta files reach a certain size 

´  Scheduled intervals 
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Handling Updates in HDFS 



SQL on NoSQL! 

´ Put a NoSQL solution on top of HDFS 
´ For the record, you can avoid HDFS completely 

´ But, this is a SQL-on-Hadoop tutorial 

´ NoSQL solutions can provide CRUD at scale 
´ CRUD = Create, Read, Update, Delete 

´ And, then run SQL on it? 

´ Sounds crazy? Well, lets see 
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23 HBase: The Hadoop Database  

´ Not HadoopDB, which we will see later in the tutorial 

´ HBase is a data store built on top of HDFS based on Google Bigtable 

´ Data is logically organized into tables, rows, and columns 
´ Although, Key-Value storage principles are used at multiple points in the design 

´ Columns are organized into Column Families (CF) 

´ Supports record-level CRUD, record-level lookup, random updates 

´ Supports latency-sensitive operations 
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HBase stores three types of files 
on HDFS: 
•  WALs 
•  HFiles 
•  Links 
  



HBase Read and Write Paths 26 



HFile Structure 
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•  Immutable 
•  Created on flush or compaction 

•  Sequential writes 
•  Read randomly or sequentially 
•  Data is in blocks 

•  HFile blocks are not HDFS blocks 
•  Default data block size == 64K 
•  Default index block size == 128K 
•  Default bloom filter block size  
== 128K 

•  Use smaller block sizes for  
faster random lookup 
•  Use larger block sizes for faster scans 
•  Compression is recommended 
•  Block encoding is recommended 

HFile Format 



Run-time Engine 

9/28/15 SQL-on-Hadoop Tutorial 

28 



´ Low Latency 

´ High Throughput 

´ Degree of tolerance to faults 

´ Scalability in data size 

´ Scalability in cluster size 

´ Resource elasticity 

´ Multi-tenancy 

´ Ease of installation in existing environments  
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´ Push computation to data 

´ Columnar data formats 

´ Vectorization 

´ Support for multiple data formats 

´ Support for UDFs 

9/28/15 SQL-on-Hadoop Tutorial 

30 Accepted across SQL-on-Hadoop Solutions 



´ What is the Lowest Common Execution Unit 

´ Use of Push Vs. Pull 

´ On the JVM or not 

´ Fault tolerance: Intra-query or inter-query 

´ Support for multi-tenancy  
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´ Hive 
´ Tenzing 
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´ Having a MapReduce Job as the Lowest Execution Unit 
quickly becomes restrictive 

´ Query execution plans become MapReduce workflows 
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D1 D2 

D3 

D4 

D6 D5 

D7 

D01 D02 

J1 J2 

J3 

J4 

J5 J6 

J7 

MapReduce Jobs 
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Datasets 

MapReduce Workflows 



´ On efficient joins in the MapReduce paradigm 

´ On reducing the number of MapReduce jobs by 
packing/collapsing the MapReduce workflow  
´ Horizontally 

´ Shared scans 

´ Vertically 

´ Making using of static and dynamic partitioning 

´ On efficient management of intermediate data 
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´ Dryad 
´ Tez 
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Tez: Inspired by Dryad and Powered by YARN 
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´ The Hadoop Community realized that 
MapReduce cannot be the Lowest 
Execution Unit for all data apps 

´ Separated out the resource 
management aspects from 
application management 

´ YARN is best seen as an Operating 
System for Data Processing Apps 

´ Recall the 80s: Databases and 
Operating Systems: Friends or Foes? 
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An Example of What Tez Enables  
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A Tez Slide on Tez 
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Spark: A Different Way to Look at a Dataflow  
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Fault Tolerance 
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MapReduce Fault Tolerance 
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MapReduce Fault Tolerance 
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MapReduce Fault Tolerance 
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MapReduce Fault Tolerance 
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MapReduce Fault Tolerance 
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MapReduce Fault Tolerance 
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Downsides of MapReduce Fault 
Tolerance 
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Spark RDDs 

´ Stores intermediate results in memory rather than disk 
´ Advantage: Performance 

´ Disadvantage: Memory requirements 
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Resource Management 
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Resource Management 

´ (At least) Two dimension problem: 

1.  RM across different frameworks 
´ Usually not a dedicated cluster 

´ Shared across multiple frameworks 
´ ETL (MapReduce, Spark), Hbase 

´ SQL-on-Hadoop processing 

2.  RM across concurrent queries 
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RM -- Across frameworks  

´ YARN – Yet Another Resource Negotiator 

´ Centralized, cluster-wide resource management 
system  

´ Allows frameworks to share resources without 
partitioning between them 

´ Designed for batch-mostly processing 

´ Not mature 

´ Not good for interactive analytics 

´ Not meant for long running processes 

´ Approaches: Llama and Slider 
9/28/15 SQL-on-Hadoop Tutorial 
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RM -- LLAMA (low-latency application master) 

´ Introduced by Cloudera 
´ LLAMA  acts as a proxy between Impala and YARN 
´ Mitigates some of the batch-centric design aspects of 
YARN: 
´ High resource acquisition latency -> solves via resource caching 

´ Resource request is immutable -> solves via expansion request 

´ Resource allocation is incremental -> solves via gang scheduling 

6
3 



´  Slider allows running non-YARN enabled applications on YARN 

´ Without having to write your own custom Application Master 

´  Existing applications are packaged as Slider applications 

´  Encapsulates a set of one or more application components or roles 

´ Deployed by Slider, runs in containers across a YARN cluster 

´  Pre-built packages for HBase, Accumulo, Storm, and 
jmemcached 

´  Packages need to be custom built for other applications 

´  Some notable Slider features 

´ Applications can be stopped and started later à state is persisted 

´ Container failures are automatically detected by Slider and 
restarted 

64 

64 RM -- Apache Slider 



Query Optimization 
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Some Techniques We Know and Love 
Are not Directly Applicable 

´ Indexing  

´ Zone-maps 

´ Co-located joins 

´ Query rewrites 

´ Cost-based 
optimization 

´  Databases own their storage 
SQL-on-Hadoop systems do 
not 

´ Metadata management is 
tricky 

´ Data inserted/loaded without 
SQL system knowledge  

´ No co-location of related 
tables 

´  HDFS is for most practical 
purposes, read-only 
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´ Hive Partition tables maintain metadata values as one folder/ 

directory in HDFS, per distinct value: 

´ Example: PARTITIONED BY (country STRING, year INT, month INT, day INT) ;  

´ Folder/Directory created for country=US/year=2012/month=12/day=22  

´ Partitioning only logical, not physical 

´ Partition pruning eliminates reading files that are not needed 

´ Almost all SQL-on-Hadoop offerings support this 

´  Hive, Impala, SparkSQL, IBM BigSQL, …. 
9/28/15 SQL-on-Hadoop Tutorial 
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´ ORCFile broken into Stripes (250MB default)  

´  Index with Min/Max values stored for each Column 

´ Data is a “stream” of columns 

´ Bloom filters for each stripe in ORCFile allow fast lookups 

´ Parquet also supports min/max values 

´ Works well when data is sorted, not very effective otherwise 
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Quick look at query optimizers 

´ Two types of optimization 
´ Logical transformations to transform query into equivalent but simpler form 

´ Cost-based enumeration of alternative execution plans 

´ Most systems support the first one  

´ Cost-based optimization depends on good statistics and a good 
model of the execution environment 
´ Without controlling data storage, statistics are “gestimates” 
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´ Selection/projection pushdown  

´ Nested SQL queries require more sophisticated rewrites, 
such as decorrelation 

´ New systems all have rewrites but lack complex 
decorrelation and subquery optimization ones 
´ Hive, Impala, Presto, Spark SQL 

´ Systems that leverage mature DB technology  offer more 
sophisticated rewrite engines 
´  IBM SQL, Hadapt, HP Vertica 

9/28/15 SQL-on-Hadoop Tutorial 
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´ Hive analyze table collects basic statistics 
´ Column value distributions, min-max, no-of-distinct values 

´ No control of data à data changes without the systems’ 
knowledge 

´ Multi-tenant system makes it harder to build a cost 
model 
´ More complex system behavior 

9/28/15 SQL-on-Hadoop Tutorial 

71 

More adaptive query processing is needed 
 

Cost-based Optimization 



´ Co-partitioning two tables on the join key enables local joins 

´ HDFS default block placement policy scatters blocks in the 
cluster 

´ Actian Vortex changes HDFS default block placement to 
enforce co-located joins 
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Ø  Files A & B are co-located 
Ø  Files C & D are co-located 

File A File B 

File D File C 

Co-located joins 



Outline of Tutorial 

´ This session [13:30-15:00] 
´ SQL-on-Hadoop Technologies 

´ Storage 

´ Run-time engine 

´ Query optimization 

´ Q&A 
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´ Second Session [15:30-17:00] 
´ SQL-on-Hadoop examples 

´ HadoopDB/Hadapt 

´ Presto 

´ Impala 

´ BigSQL 

´ SparkSQL 

´ Phoenix/Spice Machine 

´ Research directions 

´ Q&A 



HadoopDB 

´  First of avalanche of SQL-on-Hadoop solutions to claim 100x faster than Hive (on 
certain types of queries) 

´  Used Hadoop MapReduce to coordinate execution of multiple independent 
(typically single node, open source) database systems 

´ Maintained MapReduce’s fault tolerance 

´  Sped up single-node processing via leveraging database performance optimizations: 

´ Compression 

´ Vectorization 

´ Partitioning 

´ Column-orientation 

´ Query optimization 

´ Broadcast joins 

´  Flexible query interface (both SQL and MapReduce) 
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HadoopDB Architecture 75 



HadoopDB SMS Planner 76 



HadoopDB History 

´ Paper published in 2009 

´ Company founded in 2010 (Hadapt) to commercialize 
HadoopDB 

´ Added support for search in 2011 (for major insurance 
customer) 

´ Added JSON support in 2012 

´ Added interactive query engine in 2013 

´ Acquired by Teradata in 2014 
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Teradata Unified Data Architecture: QueryGrid 
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Remote Processing On Hadoop 

´ Query through 
Teradata 

´ Leaves of query plan 
sent to SQL-on-Hadoop 
engine 

´ Results returned to 
Teradata 

´ Additional query 
processing done in 
Teradata 

´ Final results sent back 
to application/user 

´ Teradata 15.0 



´ Bi-directional data movement 
´ Read and write data to Hadoop 

´ Create new table in Hadoop or insert records 

´ Query push-down 
´ Execute query on Hadoop 

´ Qualify rows and columns to reduce data returned 

´ Easy configuration and simplified queries 
´ Create “Hadoop server” definition once 

´ Use @foreign_server name to access Hadoop 

 

Teradata QueryGrid Teradata-Hadoop  



History of Presto 

FALL 2012 
6 developers  
start Presto 

development 

FALL 2014 
88 releases  

41 contributors  
3943 commits 

SPRING 2015 
Teradata 

provides first 
commercial 
support for 

Presto + 
roadmap 

SPRING 2013 
Presto rolled 

out within 
Facebook 

FALL 2013 
Facebook 

open 
sources 
Presto 

FALL 2008 
Facebook 

open 
sources Hive 



Hive 

Reduce Reduce 

Map Map 

Reduce Reduce 

Map Map 

Disk 

Disk 

Disk 

Wait  
between  

stages 

Write to Disk  
•  Fault Tolerance 

•  IO Overhead 

Presto 

Task Task 

Task Task 

Task 

Task Task 

All stages are pipelined 
•  Reduced wait time 

•  No Fault Tolerance 

Memory-to-memory 
Data transfer 

•  No disc IO 

•  Data chunk must  

     fit in memory 



´ Uses Hive metastore 

´ Bytecode query compilation 

´ Approximate queries 
´ Return X% sample rows 

´ Limitations 
´ Manual join SQL ordering 

´ Non-equi joins not supported 

´ Not YARN enabled 

´ No Avro support 

´ No spill-to-disk 

´ Written in Java 

´ 100% ANSI SQL goal 

´ Numerous built-in functions 

´ Window functions 

´ Array/map support 

´ Plug-in architecture  
´ Join across data stores 

´ Hive, Cassandra, Kafka, MySQL 

´ Amazon S3 

Presto at a Glance 



Presto Pipeline Architecture 

Data  stream API 

Worker 

Data  stream API 

Worker 

Coordinator Data Location 
API 

Metadata 
API 

Parser/ 
analyzer 

Planner Scheduler 

Worker 

Client 



Presto Connectors 

Client 

Presto worker Presto worker Presto worker Presto worker 

Presto Coordinator 



Github: Presto Plug-in Connectors 

´ Hive tables and HCatalog 

´ Apache Cassandra 

´ Apache Kafka   

´ Kafka topics = Presto tables, messages = rows 

´ MySQL     

´ Single node access only -- no sharding 

´ Postgres  

´ Single node access only 

´ HBase  

´ not released 



Cloudera Impala 
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Query Executor!

SQL App!

ODBC!
Hive Metastore! HDFS NameNode! Statestore!

Query Planner!

Query Coordinator!

HDFS DN! HBase!

Impalad

HDFS DN! HBase!

Impalad

HDFS DN! HBase!

Impalad

Catalog!

Query Executor!

Query Planner! Query Planner!

Query Coordinator! Query Coordinator!

Query Executor!

SQL  request

Plan  Fragments

Results

Query execution at the high level 88 
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HashJoin Scan: t1 

Scan: t3 

Scan: t2 

HashJoin 

TopN 

Pre-Agg 

MergeAgg 

TopN 

Broadcast 

Merge 

hash t2.id hash t1.id1 

hash 
t1.custid 

at HDFS DN 

at HBase RS 

at coordinator 

HashJoin 

Scan: t1 

Scan: t3 

Scan: t2 

HashJoin 

TopN 

Agg 

Single-Node 
Plan 

Query Planning: Distributed Plans 



´ Written in C++ for minimal cycle and memory overhead 
´ Leverages decades of parallel DB research 
´ Partitioned parallelism 
´ Pipelined relational operators 
´ Batch-at-a-time runtime 

´ Focussed on speed and efficiency 
´ Intrinsics/machine code for text parsing, hashing, etc. 
´ Runtime code generation with LLVM 

90 Execution Engine 



´ Uses llvm to jit-compile the runtime-intensive parts of 
a query 

´ Effect the same as custom-coding a query: 

´ Remove branches, unroll loops 

´ Propagate constants, offsets, pointers, etc. 

´  Inline function calls 

´ Optimized execution for modern CPUs (instruction 
pipelines) 

91 Runtime Code Generation 
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interpreted codegen’d 

IntVal	  my_func(const	  IntVal&	  v1,	  const	  IntVal&	  v2)	  {	  
	  	  return	  IntVal(v1.val	  *	  7	  /	  v2.val);	  
}	  

SELECT	  my_func(col1	  +	  10,	  col2)	  FROM	  ...	  

my_fu
nc 

col
2 

+ 

10 col
1 

function 
pointer 

function 
pointer 

function 
pointer 

function 
pointer 

(col1 + 10) * 7 / col2 

function 
pointer 

Runtime Code Generation — Example 
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10 node cluster (12 disks / 48GB RAM / 8 cores per node) 
~40 GB / ~60M row Avro dataset 

Impala Runtime Code Generation - Performance 



Codegen is not the panacea! 94 

TPC-DS 500GB,10-node cluster TPC-H 300GB,10-node cluster 



´ Admission control and Yarn-based RM cater to different workloads 

´ Use admission control for: 

§  Low-latency, high-throughput workloads 

§  Mostly running Impala, or resource partitioning is feasible 

´ Use Llama/Yarn for: 

§  Mixed workloads (Impala, MR, Spark, …) and resource partitioning is 
impractical 

§  Latency and throughput SLAs are relatively relaxed 

Resource Management in Impala 95 
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´  Nested data: Structs, arrays, maps in Parquet, Avro, JSON, … 
´ Natural extension of SQL: expose nested structures as tables 

´ No limitation on nesting levels or number of nested fields in single query 

´  Multithreaded execution past scan operator 
´  Resource management and admission control 
´  low-latency, high-throughput mixed workloads without resource 

partitioning 

´  More SQL: ROLLUP/GROUPING SETS, INTERSECT/MINUS, MERGE 
´  Improved query planning, using statistics 
´  Physical tuning 

Roadmap: Impala 2.3+ 



Ibis: Scaling the Python Data Experience 

Target user: 
Data scientists and data engineers (“Python data users”) 

 
Goals: 

Mirror single-node Python experience, maximize productivity 
Complete support for SQL engines with Pandas-like API (same 
designer) 
High-performance Python user-defined functions 
Integration with Python data ecosystem / libraries 

97 

http://www.ibis-project.org/ 





Ibis/Impala Joint Roadmap 

•  More natural data modeling 
•  Complex types support 

•  Integration with full Python data ecosystem 
•  Advanced analytics + machine learning 
•  Enable use of performance computing tools 

•  User extensibility with native performance 
•  In-memory columnar format 
•  Python-to-LLVM IR compilation 

•  Workflow and usability tools 

99 



´ Code at github (https://github.com/cloudera/Impala/)  

´ Impala Developer Docker Images & Chef scripts 

´ https://registry.hub.docker.com/u/cloudera/impala-dev/ 

´ Minimal (7GB) — ready to compile, latest code 

´ Default (33GB) — includes test data, e.g. TPC-H 

´ Shout out to Spyros Blanas (Ohio State) 
´ http://web.cse.ohio-state.edu/~sblanas/5242/  

´ Impala JIRAs, ramp-up tasks 

100 Academic Challenge 



IBM Big SQL 
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´  Head (coordinator) node 
´  Compiles and optimizes the query 

´  Coordinates the execution of the query 

´  Big SQL worker processes reside on compute nodes (some or all) 

´  Worker nodes stream data between each other as needed 

Mgmt Node 

Big SQL 

Mgmt Node 

Hive Metastore 

Mgmt Node 

Name Node 

Mgmt Node 

Job Tracker ••• 

Compute Node 

Task 
Tracker Data Node 

Compute Node 

Task 
Tracker Data Node 

Compute Node 

Task 
Tracker Data Node 

Compute Node 

Task 
Tracker Data Node ••• 

Big 
SQL 

Big 
SQL 

Big 
SQL 

Big 
SQL 

HDFS 

102 Big SQL  – Architecture 



´  For common table formats a native I/O engine is utilized 

´  e.g. delimited, RC, SEQ, Parquet, … 

´  For all others, a java I/O engine is used 

´ Maximizes compatibility with existing tables 

´ Allows for custom file formats and SerDe's 

´  All Big SQL built-in functions are native code 

´  Customer built UDF's can be developed in C++ or Java 

 

Mgmt Node 

Big SQL 

Compute Node 

Task 
Tracker Data Node Big 

SQL 

Big SQL Worker 

Native I/O 
Engine 

 
Java I/O 
Engine 

Runtime 
Java UDFs 

Native UDFs 

103 

103 Big SQL  – Architecture (cont.) 



´ All data is Hadoop data 
´  In files in HDFS 

´ SEQ, ORC, delimited, Parquet … 

 

´ Never need to copy data to a proprietary representation 

´ All data is catalog-ed in the Hive metastore 
´  It is the Hadoop catalog 

´  It is flexible and extensible 

104 

104 Big SQL works with Hadoop 



´  The scheduler is the main RDBMS↔Hadoop service interface 

´  Interfaces with Hive metastore for table metadata 
´  SQL compiler ask it for some "hadoop" metadata, such as partitioning columns 

´  Acts like the MapReduce job tracker for Big SQL 
´ Big SQL provides query predicates for scheduler to perform partition elimination 
´ Determines splits for each “table” involved in the query 
´  Schedules splits on available Big SQL nodes 

(with best effort data locality) 
´ Decides which I/O library to use and serves  

 work (splits) to them 
´ Coordinates “commits” after INSERTs 

                                     Management Node 

Big SQL 
Master Node 

Big SQL 
Scheduler 

DDL 
FMP 

UDF 
FMP Mgmt Node 

Database 
Service 
Hive 

Metastore 

Big SQL 
Worker Node 

Java 
I/O 

FMP 

Native 
I/O 

FMP 

HDFS Data 
Node 

 MRTask 
Tracker UDF 

FMP 
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Query Rewrite 
 

´  There are many ways to express the same query 

´  Query generators often produce suboptimal queries and don't permit "hand 
optimization" 

´  Complex queries often result in redundancy, especially with views 

´  For large data volumes optimal access plans more crucial as penalty for poor 
planning is greater 
 

select sum(l_extendedprice) / 7.0 
avg_yearly 
from tpcd.lineitem, tpcd.part 
where p_partkey = l_partkey  
      and p_brand = 'Brand#23' 
      and p_container = 'MED BOX' 
      and l_quantity < ( select  0.2 *   
       avg(l_quantity)  from 
tpcd.lineitem 
       where l_partkey = p_partkey); 

select sum(l_extendedprice) / 7.0 as avg_yearly 
 from temp (l_quantity,  avgquantity, 
l_extendeprice) as 
      (select l_quantity, avg(l_quantity) over  
         (partition by l_partkey)  
          as avgquantity, l_extenedprice  
       from tpcd.lineitem, tpcd.part 
       where p_partkey = l_partkey 
             and p_brand = 'BRAND#23' 
             and p_container = 'MED BOX') 
 where l_quantity < 0.2 * avgquantity 

•  Query correlation eliminated 
•  Lineitem table accessed only once 
•  Execution time reduced in half! 

106 



Cost-based Optimization 

              

                    | 
                2.66667e-08  
                  HSJOIN 
                  (   7) 
                1.1218e+06  
                   8351  
           /--------+--------\ 
     5.30119e+08            3.75e+07  
       BTQ                   NLJOIN 
       (   8)                (  11) 
       948130                146345  
        7291                  1060  
         |                /----+----\ 
     5.76923e+08         1         3.75e+07  
       LTQ            GRPBY         FILTER 
       (   9)         (  12)        (  20) 
       855793         114241        126068  
        7291           1060          1060  
         |              |             | 
     5.76923e+08        13          7.5e+07  
       TBSCAN         TBSCAN        BTQ    
       (  10)         (  13)        (  21) 
       802209         114241        117135  
        7291           1060          1060  
         |              |             | 
       7.5e+09          13        5.76923e+06  
 TABLE: TPCH5TB_PARQ  TEMP          LTQ    
       ORDERS         (  14)        (  22) 
         Q1           114241        108879  
                       1060          1060  
                        |             | 
                        13        5.76923e+06  
                      DTQ           TBSCAN 
                      (  15)        (  23) 
                      114241        108325  
                       1060          1060  
                        |             | 
                         1          7.5e+08  
                      GRPBY   TABLE: TPCH5TB_PARQ 
                      (  16)       CUSTOMER 
                      114241          Q5 
                       1060  
                        | 
                         1  
                      LTQ    
                      (  17) 
                      114241  
                       1060  
                        | 
                         1  
                      GRPBY  
                      (  18) 
                      114241  
                       1060  
                        | 
                    5.24479e+06  
                      TBSCAN 
                      (  19) 
                      113931  
                       1060  
                        | 
                      7.5e+08  
                TABLE: TPCH5TB_PARQ 
                     CUSTOMER 
                        Q2 

 Few extensions required to the Cost Model 
 Scan operator cost model extended  to evaluate 
cost of reading from Hadoop 

  # of files, size of files,  # of partitions, # of 
nodes 

  Data not hash partitioned on a particular columns 
(aka “Scattered partitioned”) 
 New parallel join strategy 

 Every node read data from HDFS, instead of 
one reading and broadcasting 

 Optimizer now knows in which subset of nodes the 
data resides => better costing! 
 Sophisticated statistics for cardinality estimation 

107 



Statistics 
´  Big SQL utilizes Hive statistics collection with 

some extensions: 

´ Additional support for column groups, 
histograms and frequent values 

´ Automatic determination of partitions 
that require statistics collection vs. 
explicit 

´ Partitioned tables: added table-level 
versions of NDV, Min, Max, Null count, 
Average column length 

´ Hive catalogs as well as database 
engine catalogs are also populated 

´ We are restructuring the relevant code 
for submission back to Hive 

´  Capability for statistic fabrication if no stats 
available at compile time 

Table statistics 
• Cardinality (count) 
• Number of Files 
• Total File Size 

Column statistics 
• Minimum value (all types) 
• Maximum value (all types) 
• Cardinality (non-nulls) 
• Distribution (Number of Distinct Values 
NDV) 

• Number of null values 
• Average Length of the column value (all 
types) 

• Histogram - Number of buckets configurable 
• Frequent Values (MFV) – Number 
configurable 

Column group statistics 

108 



Big SQL supports HBase tables 

´  Big SQL with HBase – basic operations  

–  Create tables and views  

–  LOAD / INSERT data  

–  Query data with full SQL breadth  

  

´  HBase-specific design points  

´ Column mapping 

´ Dense / composite columns  

–  FORCE KEY UNIQUE option  

–  Secondary indexes  

–  . . . .  

109 



Big SQL works under YARN   
´  Big SQL integrates with YARN via the 

Slider project 

´  YARN chooses suitable hosts for Big SQL 
worker nodes 

´  Big SQL resources are accounted for by 
YARN 

´  Size of the Big SQL cluster may 
dynamically grow or shrink as needed 

´ Configured by user (not by installation 
default)  

´ More Big SQL workers are added when 
more resources are needed 

´ When demand wears off, Big SQL workers 
are shut down 

Data Management 

SPA
RK 

H
ive 

Pig 

Big
 SQ

L 

Data Access 

HDFS 

M
a

p
Re

d
uc

e 

YARN 
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Summary 

´  Big SQL provides rich, robust, standards-based SQL support for data stored in HDFS and HBase 

´  Uses IBM common client ODBC/JDBC drivers 

 

´  Big SQL fully integrates with SQL applications and tools 

´  Existing queries run with no or few modifications* 

´  Existing JDBC and ODBC compliant tools can be leveraged 

 

´  Big SQL provides faster and more reliable performance 

´  Big SQL uses more efficient access paths to the data 

´  Big SQL is optimized to more efficiently move data over the network 

´  Big SQL is capable of executing all 22 TPC-H and all 99 TPC-DS queries without modification 

 

´  Big SQL provides and enterprise grade data management 

´  Security, Auditing, workload management … 
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SparkSQL 
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From: 

What is so great about Spark? 113 



´  Distributed data analytics engine, generalizing Map Reduce 

´  Core engine, with streaming, SQL, machine learning, and graph processing modules 

114 OK, but what exactly is Spark? 



´ RDDs 

´ Distributed collection of objects  

´ Can be cached in memory 

´ Built via parallel transformations (map, filter, …) 
´ Automatically rebuilt on failure based on lineage 

´ DAGs of RDDs and Transformations can be (lazily) 
executed via actions 
´ Examples: Export to HDFS, count number of objects 

Spark Core: 
RDDs, Transformations & Actions 
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9/28/15 SQL-on-Hadoop Tutorial 

116 Spark’s DAG Execution 



´ Building a real-world big data application without and with Spark:  

…
HDFS 
read

HDFS 
writeET

L HDFS 
read

HDFS 
writetra

in HDFS 
read

HDFS 
writequ

er
y

HDFS

HDFS 
read ET

L
tra

in
qu

er
y

With Spark:


Interactive"
analysis

Why Application Developers love Spark 117 



Raw JSON Tweets 

SQL 
Machine 
Learning 

Streaming 

An Example App 118 



import	  org.apache.spark.sql._	  	  
val	  ctx	  =	  new	  org.apache.spark.sql.SQLContext(sc)	  	  
val	  tweets	  =	  sc.textFile("hdfs:/twitter")	  	  
val	  tweetTable	  =	  JsonTable.fromRDD(sqlContext,	  tweets,	  Some(0.1))	  	  
tweetTable.registerAsTable("tweetTable")	  	  
	  
ctx.sql("SELECT	  text	  FROM	  tweetTable	  LIMIT	  5").collect.foreach(println)	  	  
ctx.sql("SELECT	  lang,	  COUNT(*)	  AS	  cnt	  FROM	  tweetTable	  \	  
	  	  GROUP	  BY	  lang	  ORDER	  BY	  cnt	  DESC	  LIMIT	  10").collect.foreach(println)	  	  
val	  texts	  =	  sql("SELECT	  text	  FROM	  tweetTable").map(_.head.toString)	  	  
	  
def	  featurize(str:	  String):	  Vector	  =	  {	  ...	  }	  	  
val	  vectors	  =	  texts.map(featurize).cache()	  	  
val	  model	  =	  KMeans.train(vectors,	  10,	  10)	  	  
	  
sc.makeRDD(model.clusterCenters,	  10).saveAsObjectFile("hdfs:/model")	  
val	  ssc	  =	  new	  StreamingContext(new	  SparkConf(),	  Seconds(1))	  	  
	  	  	  
val	  model	  =	  new	  KMeansModel(	  
	  	  	  	  ssc.sparkContext.objectFile(modelFile).collect())	  
	  
//	  Streaming	  
val	  tweets	  =	  TwitterUtils.createStream(ssc,	  /*	  auth	  */)	  	  
val	  statuses	  =	  tweets.map(_.getText)	  	  
val	  filteredTweets	  =	  statuses.filter	  {	  	  
	  	  	  	  t	  =>	  model.predict(featurize(t))	  ==	  clusterNumber	  	  
}	  	  
filteredTweets.print()	  	  
	  	  	  
ssc.start()	  
	  	  

Fi
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´ SQL, SQL, SQL, … 

´ Databricks says that 100% of their customers 
use some SQL 

´ Schema is very useful 

´ Even in complex pipelines that process a lot 
of un/semi-structured data 

´ Separation of logical from physical plan is critical 
for performance and scalability 

Why SparkSQL? 



Plan Optimization & Execution 
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SQL AST 

DataFrame 

Unresolved 
Logical Plan Logical Plan Optimized 

Logical Plan RDDs 
Selected 
Physical 

Plan 

Analysis Logical 
Optimization 

Physical 
Planning 

C
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t M
od
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Physical  
Plans 

Code 
Generation 

Catalog 

DataFrames and SQL share the same optimization/execution pipeline 
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1.  A distributed collection of rows organized into 
named columns 

2.  An abstraction for selecting, filtering, aggregating 
and plotting structured data  (cf. R, Pandas, Ibis) 

DataFrame 



Catalyst Optimizer: Tree Transformations 

´  Developers express tree transformations as PartialFunction[TreeType,TreeType] 

1.  If the function does apply to an operator, that operator is replaced with the result. 

2.  When the function does not apply to an operator, that operator is left unchanged. 

3.  The transformation is applied recursively to all children. 



Prior Work: Optimizer Generators 

´ Volcano / Cascades:  

•  Create a custom language for expressing rules that rewrite trees of 
relational operators. 

•  Build a compiler that generates executable code for these rules. 



An Example Catalyst Transformation 

1
2
5 

1.  Find filters on top of projections. 

2.  Check that the filter can be 
evaluated without the result of the 
project. 

3.  If so, switch the operators. 

Project
name

Project
id,name

Filter
id = 1

People

Original
Plan

Project
name

Project
id,name

Filter
id = 1

People

Filter
Push-Down



Filter Push Down Transformation 

val	  newPlan	  =	  queryPlan	  transform	  {	  
	  case	  f	  @	  Filter(_,	  p	  @	  Project(_,	  grandChild))	  	  
	  	  	  if(f.references	  subsetOf	  grandChild.output)	  =>	  
	  p.copy(child	  =	  f.copy(child	  =	  grandChild)	  

}	  



Community-Contributed Transformations 
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110 line patch took this user’s query from 
“never finishing” to 200s. 



Project Tungsten: Getting Spark to Run 
Well on the JVM 

´ Overcoming JVM limitations: 

•  Memory Management and Binary Processing: 
leveraging application semantics to manage 
memory explicitly and eliminate the overhead of 
JVM object model and garbage collection 

•  Cache-aware computation: algorithms and data 
structures to exploit memory hierarchy 

•  Code generation: using code generation to exploit 
modern compilers and CPUs 
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Use sun.misc.Unsafe 

´ JVM internal API 

´ Can manipulate memory without safety checks 
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´ Null bits 

´ Inline fixed-length values 

´ Align on 8-byte word boundaries 



Apache Phoenix 
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´ SQL	  compiler	  and	  execu2on	  engine	  for	  HBase	  	  
´ Query	  engine	  transforms	  SQL	  into	  na2ve	  HBase	  APIs:	  put,	  delete,	  
parallel	  scans	  (instead	  of,	  say,	  MapReduce)	  

´ Supports	  features	  not	  provided	  by	  HBase:	  Secondary	  Indexing,	  
Mul2-‐tenancy,	  simple	  Hash	  Join,	  etc.	  

The Phoenix Approach 



9/28/15 SQL-on-Hadoop Tutorial 

134 Phoenix Architecture 



Open (Research) Challenges 
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´  Cost-based optimizer relies on 

´  Statistics over base relations 

´  Formulas for cost estimation 

´  Rules for plan enumeration 

´  Problems: 

´  Stats not reliable, do not own the data 

´  Prominent use of UDFs 

´  Independence assumption between predicates do not hold 

´  More nested data, harder to estimate selectivities 

´  Bad plans over big data may run “forever” 

Defer more cost-based decisions to run-time; robust, adaptive 
query optimization 

Challenge 1: Query optimization 
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´ No single framework owns 
the data! 

´ Multiple frameworks, with 
different resource 
requirements 

HDFS, S3

Hadoop Yarn

Spark/MR/Tez/..

Streaming SQL Graph Machine 
learning

ETL and 
batch 

processing

´ How to share the data? 

´ How to share resources? 

´ How to work together 
seamlessly? 

Challenge 2: Multi-framework environment 



´ HDFS is a problem for transactional workloads 
´ Workarounds do not lend itself to high-performance OLAP 

´ Object-stores 

´ Interesting combinations are emerging 
´ Hive LLAP + Phoenix, Splice Machine + Spark 

´ Need more tightly integrated solutions 

´ Need an updatable, fast, distributed file system 

9/28/15 SQL-on-Hadoop Tutorial 

138 Challenge 3: Transactions and 
analytics in one system 
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