SQL-on-Hadoop Tutorial
VLDB 2015
Presenters

Fatma Özcan
IBM Research
IBM Big SQL

Ippokratis Pandis
Cloudera
Cloudera Impala

Daniel Abadi
Yale University and Teradata
HadoopDB/Hadapt

Shivnath Babu
Duke University
Starfish
Why SQL-on-Hadoop?

- People need to process data in parallel
- Hadoop is by far the leading open source parallel data processing platform
- Low costs of HDFS results in heavy usage

Lots of data in Hadoop with appetite to process it
MapReduce is not the answer

- MapReduce is a powerful primitive to do many kinds of parallel data processing
- BUT
 - Little control of data flow
 - Fault tolerance guarantees not always necessary
 - Simplicity leads to inefficiencies
 - Does not interface with existing analysis software
 - Industry has existing training in SQL

SQL interface for Hadoop critical for mass adoption
The database community knows how to process data

- Decades of research in parallel database systems
 - Efficient data flow
 - Load balancing in the face of skew
 - Query optimization
 - Vectorized processing
 - Dynamic compilation of query operators
 - Co-processing of queries

Massive talent war between SQL-on-Hadoop companies for members of database community
SQL-on-Hadoop is not a direct implementation of parallel DBMSs

- Little control of storage
 - Most deployments must be over HDFS
 - Append-only file system
 - Must support many different storage formats
 - Avro, Parquet, RCFiles, ORC, Sequence Files

- Little control of metadata management
 - Optimizer may have limited access to statistics

- Little control of resource management
 - YARN still in its infancy
SQL-on-Hadoop is not a direct implementation of parallel DBMSs

- Hadoop often used a data dump (swamp?)
 - Data often unclean, irregular, and unreliable

- Data not necessarily relational
 - HDFS does not enforce structure in the data
 - Nested data stored as JSON extremely popular

- Scale larger than previous generation parallel database systems
 - Fault tolerance vs. query performance

- Most Hadoop components written in Java
- Want to play nicely with the entire Hadoop ecosystem
Outline of Tutorial

This session [13:30-15:00]
- SQL-on-Hadoop Technologies
 - Storage
 - Run-time engine
 - Query optimization
- Q&A

Second Session [15:30-17:00]
- SQL-on-Hadoop examples
 - HadoopDB/Hadapt
 - Presto
 - Impala
 - BigSQL
 - SparkSQL
 - Phoenix/Spice Machine
- Research directions
- Q&A
Storage
Quick Look at HDFS

![Diagram of HDFS architecture with NameNode at the top, followed by DataNodes]

- NameNode
- DataNodes (replicated)
HDFS is

- **Good for**
 - Storing large files
 - Write once and read many times
 - “Cheap” commodity hardware

- **Not good for**
 - Low-latency reads
 - Short-circuit reads and HDFS caching help
 - Large amounts of small files
 - Multiple writers
In-situ Data Processing

- HDFS as the data dump
 - Store the data first, figure out what to do later
- Most data arrive in text format
 - Transform, cleanse the data
 - Create data marts in columnar formats
- Lost of nested, JSON data
- Some SQL in data transformations, but mostly other languages, such as Pig, Cascading, etc..
- Columnar formats are good for analytics
Most SQL-on-Hadoop systems do not control or own the data
- Hive, Impala, Presto, Big SQL, Spark SQL, Drill

Other SQL-on-Hadoop systems tolerate HDFS data, but work better with their own proprietary storage
- HadoopDB/Hadapt
- HAWQ, Actian Vortex, and HP Vertica
Query Processors with HDFS Native Formats

- Only support native Hadoop formats with open-source reader/writers
- Any Hadoop tool can generate their data
 - Pig, Cascading and other ETL tools
- They are more of a query processor than a database
- Indexing is a challenge!!
- No co-location of multiple tables
 - Due to HDFS
Almost all exploit some existing database systems
They store their own binary format on HDFS
Hadapt stores the data in a single node database, like postgres
 - Can exploit Postgres indexes
HAWQ, Actian, HP Vertica, and Hadapt all control how tables are partitioned, and can support co-located joins
HDFS Native Formats

- CSV files are most common for ETL-like workloads
- Lots of nested and complex data
 - Arrays, structs, maps, collections
- Two major columnar formats
 - ORCFile
 - Parquet
- Data serialization
 - JSON and Avro
 - Protocol buffers and Thrift
Parquet

- PAX format, supporting nested data
- Idea came from the Google’s Dremel System
- Major contributors: Twitter & Cloudera
- Provides dictionary encoding and several compressions
- Preffered format for Impala, IBM Big SQL, and Drill
- Can use Thrift or Avro to describe the schema

Columnar storage
- Fast compression
- Schema projection
- Efficient encoding

Nested data
- A natural schema
- Flexible
- Less duplication applying denormalization
Parquet, cont.

- A table with N columns is split into M row groups.
- The file metadata contains the locations of all the column metadata start locations.
- Metadata is written after the data to allow for single pass writing.
- There are three types of metadata: file metadata, column (chunk) metadata and page header metadata.
- Row group metadata includes
 - Min-max values for skipping
ORCFile

- Second generation, following RC file
- PAX formats with all data in a single file
- Hortonworks is the major contributor, together with Microsoft
- Preferred format for Hive, and Presto
- Supports
 - Dictionary encoding
 - Fast compression
- File, and stripe level metadata
- Stripe indexing for skipping
- Now metadata even includes bloom filters for point query lookups
ORCFile Layout
Handling Updates in HDFS

- No updates in HDFS
- Appends to HDFS files are supported, but not clear how much they are used in production
- Updates are collected in delta files
- At the time of read delta and main files are merged
 - Special inputFormats
- Lazy compaction to merge delta files and main files
 - When delta files reach a certain size
 - Scheduled intervals
SQL on NoSQL!

- Put a NoSQL solution on top of HDFS
 - For the record, you can avoid HDFS completely
 - But, this is a SQL-on-Hadoop tutorial
- NoSQL solutions can provide CRUD at scale
 - CRUD = Create, Read, Update, Delete
- And, then run SQL on it?
- Sounds crazy? Well, let’s see
HBase: The Hadoop Database

- Not HadoopDB, which we will see later in the tutorial
- HBase is a data store built on top of HDFS based on Google Bigtable
- Data is logically organized into tables, rows, and columns
 - Although, Key-Value storage principles are used at multiple points in the design
 - Columns are organized into Column Families (CF)
- Supports record-level CRUD, record-level lookup, random updates
- Supports latency-sensitive operations
HBase Architecture
HBase stores three types of files on HDFS:
- WALs
- HFiles
- Links
HBase Read and Write Paths
HFile Format

<table>
<thead>
<tr>
<th>Section</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Block</td>
<td>...</td>
</tr>
<tr>
<td>Leaf index block / Bloom block</td>
<td>...</td>
</tr>
<tr>
<td>Data Block</td>
<td>...</td>
</tr>
<tr>
<td>Leaf index block / Bloom block</td>
<td>...</td>
</tr>
<tr>
<td>Data Block</td>
<td></td>
</tr>
<tr>
<td>Meta block</td>
<td>...</td>
</tr>
<tr>
<td>Intermediate Level Data Index Blocks (optional)</td>
<td>...</td>
</tr>
<tr>
<td>Root Data Index</td>
<td>Fields for midkey</td>
</tr>
<tr>
<td>Meta Index</td>
<td></td>
</tr>
<tr>
<td>File Info</td>
<td></td>
</tr>
<tr>
<td>Bloom filter metadata (interpreted by StoreFile)</td>
<td></td>
</tr>
<tr>
<td>Trailer</td>
<td>Trailer fields Version</td>
</tr>
</tbody>
</table>

- Immutable
- Created on flush or compaction
 - Sequential writes
- Read randomly or sequentially
- Data is in blocks
 - HFile blocks are not HDFS blocks
 - Default data block size == 64K
 - Default index block size == 128K
 - Default bloom filter block size == 128K
- Use smaller block sizes for faster random lookup
- Use larger block sizes for faster scans
- Compression is recommended
- Block encoding is recommended
Run-time Engine
Design Decisions: Influencers

- Low Latency
- High Throughput
- Degree of tolerance to faults
- Scalability in data size
- Scalability in cluster size
- Resource elasticity
- Multi-tenancy
- Ease of installation in existing environments
Accepted across SQL-on-Hadoop Solutions

- Push computation to data
- Columnar data formats
- Vectorization
- Support for multiple data formats
- Support for UDFs
Differences across SQL-on-Hadoop Solutions

- What is the Lowest Common Execution Unit
- Use of Push Vs. Pull
- On the JVM or not
- Fault tolerance: Intra-query or inter-query
- Support for multi-tenancy
SQL on MapReduce

- Hive
- Tenzing
Hive
Example: Joins in MapReduce

SQL Query

```
SELECT * FROM customer join order ON customer.id = order.cid;
```

Diagram

```
{ id: 11911, { first: Nick, last: Toner } }
{ id: 11914, { first: Rodger, last: Clayton } }

{ id: 11911, { first: Nick, last: Toner } }
{ cid: 4150, { price: 10.50, quantity: 3 } }
{ cid: 11914, { price: 12.25, quantity: 27 } }

{ id: 11914, { first: Rodger, last: Clayton } }
{ cid: 11914, { price: 40.50, quantity: 10 } }

Identical keys shuffled to the same reducer. Join done reduce-side.
```
Limitations

- Having a MapReduce Job as the Lowest Execution Unit quickly becomes restrictive
- Query execution plans become MapReduce workflows
MapReduce Workflows

Datasets

D0 \rightarrow J1
D1 \rightarrow J1
D2 \rightarrow J2
D3 \rightarrow J3
D4 \rightarrow J4
D5 \rightarrow J5
D6 \rightarrow J6
D7 \rightarrow J7

MapReduce Jobs

J1 \rightarrow D0
J2 \rightarrow D0₂
J3 \rightarrow D2
J4 \rightarrow D3
J5 \rightarrow D4
J6 \rightarrow D6
J7 \rightarrow D7
Research Done to Address these Limitations

- On efficient joins in the MapReduce paradigm
- On reducing the number of MapReduce jobs by packing/collapsing the MapReduce workflow
 - Horizontally
 - Shared scans
 - Vertically
 - Making use of static and dynamic partitioning
- On efficient management of intermediate data
From MapReduce to DAGs

- Dryad
- Tez
Dryad: Dataflows as First-class Citizens
Smart DAG Execution in Dryad

Channels

Finite streams of items

- distributed filesystem files (persistent)
- SMB/NTFS files (temporary)
- TCP pipes (inter-machine)
- memory FIFOs (intra-machine)
Tez: Inspired by Dryad and Powered by YARN

Hive / HIVE-4660

Let there be Tez

Agile Board

Tez is a new application framework built on Hadoop Yarn that can execute complex directed acyclic graphs of general data processing tasks. Here's the project's page: http://incubator.apache.org/projects/tez.html

The interesting thing about Tez from Hive's perspective is that it will over time allow us to overcome inefficiencies in query processing due to having to express every algorithm in the map-reduce paradigm.

The barrier to entry is pretty low as well: Tez can actually run unmodified MR jobs; But as a first step we can without much trouble start using more of Tez' features by taking advantage of the MRR pattern.

MRR simply means that there can be any number of reduce stages following a single map stage - without having to write intermediate results to HDFS and re-read them in a new job. This is common when queries require multiple shuffles on keys without correlation (e.g.: join - grp by - window function - order by)
The Hadoop Community realized that MapReduce cannot be the Lowest Execution Unit for all data apps
Separated out the resource management aspects from application management
YARN is best seen as an Operating System for Data Processing Apps
Recall the 80s: Databases and Operating Systems: Friends or Foes?
An Example of What Tez Enables

```
SELECT g1.x, g1.avg, g2.cnt
FROM (SELECT a.x, AVERAGE(a.y) AS avg FROM a GROUP BY a.x) g1
JOIN (SELECT b.x, COUNT(b.y) AS avg FROM b GROUP BY b.x) g2
ON (g1.x = g2.x)
ORDER BY avg;
```

Hive – MR

GROUP a BY a.x
JOIN (a,b)
ORDER BY

Hive – Tez

GROUP b BY b.x
GROUP BY a.x
JOIN (a,b)
ORDER BY
A Tez Slide on Tez
sc.textFile(hdfsPath)
 .map(parseInput)
 .filter(subThreshold)
 .reduceByKey(tallyCount)
 .map(formatOutput)
 .saveAsTextFile(outPath)
Spark: A Different Way to Look at a Dataflow
Fault Tolerance
MapReduce Fault Tolerance

HDFS

Map
Map
Map
Map

Reduce
Reduce
Reduce

HDFS

Map
Map
Map
Map

Reduce
Reduce
Reduce

HDFS

Map
Map
Map

Reduce
Reduce

Map

Reduce

SQL-on-Hadoop Tutorial
MapReduce Fault Tolerance
MapReduce Fault Tolerance

HDFS

Map
Map
Map
Map
Map
Reduce
Reduce
Reduce
Reduce

HDFS

Map
Map
Map
Map
Reduce
Reduce
Reduce
Reduce

Map
Map
Map
Map
Reduce
Reduce
Reduce
Reduce

SQL-on-Hadoop Tutorial
MapReduce Fault Tolerance

HDFS → Map → Reduce → HDFS

HDFS → Map → Reduce → HDFS
MapReduce Fault Tolerance
MapReduce Fault Tolerance
Fault Tolerance

- SELECT sourceIP, SUM(adRevenue) FROM UserVisits GROUP BY sourceIP
- Node fails (or slows down by factor of 2) in the middle of query
Downsides of MapReduce Fault Tolerance

Map output written to disk

Reduce output written to HDFS
Spark RDDs

- Stores intermediate results in memory rather than disk
 - Advantage: Performance
 - Disadvantage: Memory requirements
Resource Management
Resource Management

- (At least) Two dimension problem:
 1. RM across different frameworks
 - Usually not a dedicated cluster
 - Shared across multiple frameworks
 - ETL (MapReduce, Spark), Hbase
 - SQL-on-Hadoop processing
 2. RM across concurrent queries
RM -- Across frameworks

- **YARN** – Yet Another Resource Negotiator
 - Centralized, cluster-wide resource management system
 - Allows frameworks to share resources without partitioning between them
 - Designed for batch-mostly processing
 - Not mature
 - Not good for interactive analytics
 - Not meant for long running processes
- Approaches: Llama and Slider
RM -- LLAMA (low-latency application master)

- Introduced by Cloudera
- LLAMA acts as a proxy between Impala and YARN
- Mitigates some of the batch-centric design aspects of YARN:
 - High resource acquisition latency -> solves via resource caching
 - Resource request is immutable -> solves via expansion request
 - Resource allocation is incremental -> solves via gang scheduling
RM -- Apache Slider

- Slider allows running non-YARN enabled applications on YARN
 - Without having to write your own custom Application Master
- Existing applications are **packaged** as Slider applications
 - Encapsulates a set of one or more application components or roles
 - Deployed by Slider, runs in containers across a YARN cluster
- Pre-built packages for HBase, Accumulo, Storm, and jmemcached
 - Packages need to be custom built for other applications
- Some notable Slider features
 - Applications can be stopped and started later → state is persisted
 - Container failures are automatically detected by Slider and restarted
Query Optimization
Some Techniques We Know and Love Are not Directly Applicable

- Indexing
- Zone-maps
- Co-located joins
- Query rewrites
- Cost-based optimization

- Databases own their storage
 SQL-on-Hadoop systems do not
 - Metadata management is tricky
 - Data inserted/loaded without SQL system knowledge
 - No co-location of related tables
 - HDFS is for most practical purposes, read-only
Hive Partition tables maintain metadata values as one folder/directory in HDFS, per distinct value:

- Example: PARTITIONED BY (country STRING, year INT, month INT, day INT) ;
 - Folder/Directory created for country=US/year=2012/month=12/day=22

- Partitioning only logical, not physical

- Partition pruning eliminates reading files that are not needed

- Almost all SQL-on-Hadoop offerings support this
 - Hive, Impala, SparkSQL, IBM BigSQL,
ORCFile broken into Stripes (250MB default)
- Index with Min/Max values stored for each Column
- Data is a “stream” of columns

Bloom filters for each stripe in ORCFile allow fast lookups
Parquet also supports min/max values
Works well when data is sorted, not very effective otherwise
Quick look at query optimizers

- Two types of optimization
 - Logical transformations to transform query into equivalent but simpler form
 - Cost-based enumeration of alternative execution plans
- Most systems support the first one
- Cost-based optimization depends on good statistics and a good model of the execution environment
 - Without controlling data storage, statistics are “gestimates”
Selection/projection pushdown

Nested SQL queries require more sophisticated rewrites, such as decorrelation

New systems all have rewrites but lack complex decorrelation and subquery optimization ones

- Hive, Impala, Presto, Spark SQL

Systems that leverage mature DB technology offer more sophisticated rewrite engines

- IBM SQL, Hadapt, HP Vertica
Cost-based Optimization

- Hive analyze table collects basic statistics
 - Column value distributions, min-max, no-of-distinct values
- No control of data → data changes without the systems’ knowledge
- Multi-tenant system makes it harder to build a cost model
 - More complex system behavior

More adaptive query processing is needed
Co-located joins

- Co-partitioning two tables on the join key enables local joins

- HDFS default block placement policy scatters blocks in the cluster

- Actian Vortex changes HDFS default block placement to enforce co-located joins

Files A & B are co-located
Files C & D are co-located
Outline of Tutorial

This session [13:30-15:00]
- SQL-on-Hadoop Technologies
 - Storage
 - Run-time engine
 - Query optimization
- Q&A

Second Session [15:30-17:00]
- SQL-on-Hadoop examples
 - HadoopDB/Hadapt
 - Presto
 - Impala
 - BigSQL
 - SparkSQL
 - Phoenix/Spice Machine
- Research directions
- Q&A
First of avalanche of SQL-on-Hadoop solutions to claim 100x faster than Hive (on certain types of queries)

Used Hadoop MapReduce to coordinate execution of multiple independent (typically single node, open source) database systems

- Maintained MapReduce’s fault tolerance
- Sped up single-node processing via leveraging database performance optimizations:
 - Compression
 - Vectorization
 - Partitioning
 - Column-orientation
 - Query optimization
 - Broadcast joins

Flexible query interface (both SQL and MapReduce)
HadoopDB Architecture
HadoopDB SMS Planner

Hive

- File Sink Operator
- Select Operator
dummy
- Group By Operator
 re-sum by year
- Reduce Sink Operator
 partition by year
- Group By Operator
 sum revenue
- Select Operator
 Year, revenue
- Table Scan Operator
 sales

SMS

- File Sink Operator
- Select Operator
dummy
- Group By Operator
 re-sum by year
- Reduce Sink Operator
 partition by year
- Table Scan Operator
 SQL query

```sql
SELECT YEAR(saleDate), SUM(revenue) FROM sales GROUP BY YEAR(saleDate);
```
HadoopDB History

- Paper published in 2009
- Company founded in 2010 (Hadapt) to commercialize HadoopDB
- Added support for search in 2011 (for major insurance customer)
- Added JSON support in 2012
- Added interactive query engine in 2013
- Acquired by Teradata in 2014
Teradata Unified Data Architecture: QueryGrid
Remote Processing On Hadoop

- Query through Teradata
- Leaves of query plan sent to SQL-on-Hadoop engine
- Results returned to Teradata
- Additional query processing done in Teradata
- Final results sent back to application/user
- Teradata 15.0
Teradata QueryGrid Teradata-Hadoop

- Bi-directional data movement
 - Read and write data to Hadoop
 - Create new table in Hadoop or insert records

- Query push-down
 - Execute query on Hadoop
 - Qualify rows and columns to reduce data returned

- Easy configuration and simplified queries
 - Create “Hadoop server” definition once
 - Use @foreign_server name to access Hadoop
History of Presto

FALL 2008
Facebook open sources Hive

FALL 2012
6 developers start Presto development

SPRING 2013
Presto rolled out within Facebook

FALL 2013
Facebook open sources Presto

FALL 2014
88 releases
41 contributors
3943 commits

SPRING 2015
Teradata provides first commercial support for Presto + roadmap
Hive

Reduce Reduce
Disk Disk
Map Map
Reduce Reduce
Disk Disk
Map Map

Wait between stages

Write to Disk
• Fault Tolerance
• IO Overhead

Presto

Task

All stages are pipelined
• Reduced wait time
• No Fault Tolerance

Task

Memory-to-memory Data transfer
• No disc IO
• Data chunk must fit in memory
Presto at a Glance

- Written in Java
- 100% ANSI SQL goal
 - Numerous built-in functions
 - Window functions
 - Array/map support
- Plug-in architecture
 - Join across data stores
 - Hive, Cassandra, Kafka, MySQL
 - Amazon S3
- Uses Hive metastore
- Bytecode query compilation
- Approximate queries
 - Return X% sample rows
- Limitations
 - Manual join SQL ordering
 - Non-equi joins not supported
 - Not YARN enabled
 - No Avro support
 - No spill-to-disk

Numerous built-in functions
Window functions
Array/map support
Join across data stores
Hive, Cassandra, Kafka, MySQL
Amazon S3
Uses Hive metastore
Bytecode query compilation
Approximate queries
Return X% sample rows
Limitations
Manual join SQL ordering
Non-equi joins not supported
Not YARN enabled
No Avro support
No spill-to-disk
Presto Connectors

Client

Presto Coordinator

Presto worker

Presto worker

Presto worker

Presto worker

cassandra

HIVE

MySQL
Github: Presto Plug-in Connectors

- Hive tables and HCatalog
- Apache Cassandra
- Apache Kafka
 - Kafka topics = Presto tables, messages = rows
- MySQL
 - Single node access only -- no sharding
- Postgres
 - Single node access only
- HBase
 - not released
Cloudera Impala
Query execution at the high level
Query Planning: Distributed Plans

- **Single-Node Plan**
 - TopN
 - Agg
 - HashJoin
 - Scan: t1
 - Scan: t2
 - Scan: t3

- **HashJoin Operations**
 - Hash t1.id1
 - Hash t2.id

- **Scans**
 - Scan: t1
 - Scan: t2
 - Scan: t3

- **Pre-Agg**
 - at coordinator
 - Broadcast

- **MergeAgg**
 - at HBase RS
 - Hash t1.custid

- **TopN**
 - at HDFS DN
 - Merge
Execution Engine

- Written in C++ for minimal cycle and memory overhead
- Leverages decades of parallel DB research
 - Partitioned parallelism
 - Pipelined relational operators
 - Batch-at-a-time runtime
- Focussed on speed and efficiency
 - Intrinsics/machine code for text parsing, hashing, etc.
 - Runtime code generation with LLVM
Runtime Code Generation

- Uses llvm to jit-compile the runtime-intensive parts of a query
- Effect the same as custom-coding a query:
 - Remove branches, unroll loops
 - Propagate constants, offsets, pointers, etc.
 - Inline function calls
- Optimized execution for modern CPUs (instruction pipelines)
Runtime Code Generation — Example

```
IntVal my_func(const IntVal& v1, const IntVal& v2) {
  return IntVal(v1.val * 7 / v2.val);
}
SELECT my_func(col1 + 10, col2) FROM ...
```

$$ (\text{col1} + 10) \times 7 / \text{col2} $$
Impala Runtime Code Generation - Performance

10 node cluster (12 disks / 48GB RAM / 8 cores per node)
~40 GB / ~60M row Avro dataset

Query Time (sec)

- Codegen Off
- Codegen On

Select count(*) from lineitem
Select count(l_orderkey)
TPC-H Q1
Codegen is not the panacea!

TPC-H 300GB, 10-node cluster

TPC-DS 500GB, 10-node cluster

[Graphs showing performance comparison between Codegen (CG) and No Codegen (No CG) for Q1 to Q22 in TPC-H and TPC-DS configurations.]
Resource Management in Impala

- Admission control and Yarn-based RM cater to different workloads
- Use admission control for:
 - Low-latency, high-throughput workloads
 - Mostly running Impala, or resource partitioning is feasible
- Use Llama/Yarn for:
 - Mixed workloads (Impala, MR, Spark, ...) and resource partitioning is impractical
 - Latency and throughput SLAs are relatively relaxed
Roadmap: Impala 2.3+

- Nested data: Structs, arrays, maps in Parquet, Avro, JSON, ...
- Natural extension of SQL: expose nested structures as tables
- No limitation on nesting levels or number of nested fields in single query
- Multithreaded execution past scan operator
- Resource management and admission control
- Low-latency, high-throughput mixed workloads without resource partitioning
- More SQL: ROLLUP/GROUPING SETS, INTERSECT/MINUS, MERGE
- Improved query planning, using statistics
- Physical tuning
Ibis: Scaling the Python Data Experience

http://www.ibis-project.org/

Target user:
Data scientists and data engineers ("Python data users")

Goals:
Mirror single-node Python experience, maximize productivity
Complete support for SQL engines with Pandas-like API (same designer)
High-performance Python user-defined functions
Integration with Python data ecosystem / libraries
Ibis/Impala Joint Roadmap

- More natural data modeling
 - Complex types support

- Integration with full Python data ecosystem
 - Advanced analytics + machine learning
 - Enable use of performance computing tools

- User extensibility with native performance
 - In-memory columnar format
 - Python-to-LLVM IR compilation

- Workflow and usability tools
Academic Challenge

- Code at github (https://github.com/cloudera/Impala/)
- Impala Developer Docker Images & Chef scripts
 - https://registry.hub.docker.com/u/cloudera/impala-dev/
 - Minimal (7GB) — ready to compile, latest code
 - Default (33GB) — includes test data, e.g. TPC-H
- Shout out to Spyros Blanas (Ohio State)
 - http://web.cse.ohio-state.edu/~sblanas/5242/
- Impala JIRAs, ramp-up tasks
Big SQL – Architecture

- **Head (coordinator) node**
 - Compiles and optimizes the query
 - Coordinates the execution of the query
- **Big SQL worker processes reside on compute nodes (some or all)**
- **Worker nodes stream data between each other as needed**
For common table formats a native I/O engine is utilized
- e.g. delimited, RC, SEQ, Parquet, ...

For all others, a java I/O engine is used
- Maximizes compatibility with existing tables
- Allows for custom file formats and SerDe's

All Big SQL built-in functions are native code

Customer built UDF's can be developed in C++ or Java
Big SQL works with Hadoop

- All data is Hadoop data
 - In files in HDFS
 - SEQ, ORC, delimited, Parquet ...

- Never need to copy data to a proprietary representation

- All data is catalog-ed in the Hive metastore
 - It is the Hadoop catalog
 - It is flexible and extensible
Scheduler Service

- The scheduler is the main RDBMS→Hadoop service interface
- Interfaces with Hive metastore for table metadata
 - SQL compiler ask it for some "hadoop" metadata, such as partitioning columns
- Acts like the MapReduce job tracker for Big SQL
 - Big SQL provides query predicates for scheduler to perform partition elimination
 - Determines splits for each “table” involved in the query
 - Schedules splits on available Big SQL nodes (with best effort data locality)
 - Decides which I/O library to use and serves work (splits) to them
 - Coordinates “commits” after INSERTs
There are many ways to express the same query.

Query generators often produce suboptimal queries and don’t permit "hand optimization".

Complex queries often result in redundancy, especially with views.

For large data volumes optimal access plans more crucial as penalty for poor planning is greater.

- Query correlation eliminated
- Lineitem table accessed only once
- Execution time reduced in half!

```sql
select sum(l_extendedprice) / 7.0
    avg_yearly
from tpcd.lineitem, tpcd.part
where p_partkey = l_partkey
    and p_brand = 'Brand#23'
    and p_container = 'MED BOX'
    and l_quantity < ( select 0.2 *
        avg(l_quantity) from
tpcd.lineitem
    where l_partkey = p_partkey );
```

```sql
select sum(l_extendedprice) / 7.0 as avg_yearly
from temp ( l_quantity, avgquantity, l_expected ) as
    (select l_quantity, avg( l_quantity ) over
        (partition by l_partkey)
        avgquantity,
        l_extendedprice
        from tpcd.lineitem, tpcd.part
    where p_partkey = l_partkey
        and p_brand = 'BRAND#23'
        and p_container = 'MED BOX')
where l_quantity < 0.2 * avgquantity;
```
Cost-based Optimization

► Few extensions required to the Cost Model
► Scan operator cost model extended to evaluate cost of reading from Hadoop
 ► # of files, size of files, # of partitions, # of nodes
► Data not hash partitioned on a particular columns (aka “Scattered partitioned”)
► New parallel join strategy
 ► Every node read data from HDFS, instead of one reading and broadcasting
► Optimizer now knows in which subset of nodes the data resides => better costing!
► Sophisticated statistics for cardinality estimation
Big SQL utilizes Hive statistics collection with some extensions:

- Additional support for column groups, histograms and frequent values
- Automatic determination of partitions that require statistics collection vs. explicit
- Partitioned tables: added table-level versions of NDV, Min, Max, Null count, Average column length
- Hive catalogs as well as database engine catalogs are also populated
- We are restructuring the relevant code for submission back to Hive
- Capability for statistic fabrication if no stats available at compile time

Table statistics
- Cardinality (count)
- Number of Files
- Total File Size

Column statistics
- Minimum value (all types)
- Maximum value (all types)
- Cardinality (non-nulls)
- Distribution (Number of Distinct Values NDV)
- Number of null values
- Average Length of the column value (all types)
- Histogram - Number of buckets configurable
- Frequent Values (MFV) – Number configurable

Column group statistics
Big SQL supports HBase tables

- **Big SQL with HBase – basic operations**
 - Create tables and views
 - LOAD / INSERT data
 - Query data with full SQL breadth

- **HBase-specific design points**
 - Column mapping
 - Dense / composite columns
 - FORCE KEY UNIQUE option
 - Secondary indexes
 -
Big SQL works under YARN

- Big SQL integrates with YARN via the Slider project
 - YARN chooses suitable hosts for Big SQL worker nodes
 - Big SQL resources are accounted for by YARN
 - Size of the Big SQL cluster may dynamically grow or shrink as needed
 - Configured by user (not by installation default)
 - More Big SQL workers are added when more resources are needed
 - When demand wears off, Big SQL workers are shut down
Summary

- Big SQL provides *rich, robust, standards-based* SQL support for data stored in HDFS and HBase
 - Uses IBM common client ODBC/JDBC drivers

- Big SQL *fully integrates* with SQL applications and tools
 - Existing queries run with no or few modifications*
 - Existing JDBC and ODBC compliant tools can be leveraged

- Big SQL provides *faster and more reliable performance*
 - Big SQL uses more efficient access paths to the data
 - Big SQL is optimized to more efficiently move data over the network
 - Big SQL is capable of executing *all 22 TPC-H* and *all 99 TPC-DS* queries without modification

- Big SQL provides and *enterprise grade data management*
 - Security, Auditing, workload management ...
SparkSQL
What is so great about Spark?

We believe that Spark is the first system that allows a general-purpose programming language to be used at interactive speeds for in-memory data mining on clusters.

From: Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing
Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, Ion Stoica
University of California, Berkeley
OK, but what exactly is Spark?

- Distributed data analytics engine, generalizing Map Reduce
- Core engine, with streaming, SQL, machine learning, and graph processing modules
Spark Core: RDDs, Transformations & Actions

- RDDs
 - Distributed collection of objects
 - Can be cached in memory
 - Built via parallel **transformations** (map, filter, …)
 - Automatically rebuilt on failure based on lineage
 - DAGs of RDDs and Transformations can be (lazily) executed via actions
 - Examples: Export to HDFS, count number of objects
Spark’s DAG Execution
Why Application Developers love Spark

- Building a real-world big data application without and with Spark:

With Spark:

Interactive analysis
An Example App

Raw JSON Tweets

SQL

Streaming

Machine Learning
```scala
test.sad.

```
Why SparkSQL?

- SQL, SQL, SQL, ...
 - Databricks says that 100% of their customers use some SQL
- Schema is very useful
 - Even in complex pipelines that process a lot of un/semi-structured data
- Separation of logical from physical plan is critical for performance and scalability
DataFrames and SQL share the same optimization/execution pipeline
1. A distributed collection of rows organized into named columns
2. An abstraction for selecting, filtering, aggregating and plotting structured data (cf. R, Pandas, Ibis)
Developers express tree transformations as `PartialFunction[TreeType, TreeType]`

1. If the function *does apply* to an operator, that operator is replaced with the result.
2. When the function *does not apply* to an operator, that operator is left unchanged.
3. The transformation is applied recursively to all children.
Prior Work: Optimizer Generators

- Volcano / Cascades:
 - Create a custom language for expressing rules that rewrite trees of relational operators.
 - Build a compiler that generates executable code for these rules.
An Example Catalyst Transformation

1. Find filters on top of projections.
2. Check that the filter can be evaluated without the result of the project.
3. If so, switch the operators.
Filter Push Down Transformation

```scala
val newPlan = queryPlan transform {
  case f @ Filter(_, p @ Project(_, grandChild)) if(f.references subsetOf grandChild.output) =>
    p.copy(child = f.copy(child = grandChild))
}
```
Community-Contributed Transformations

110 line patch took this user’s query from “never finishing” to 200s.
Project Tungsten: Getting Spark to Run Well on the JVM

- Overcoming JVM limitations:
 - **Memory Management and Binary Processing**: leveraging application semantics to manage memory explicitly and eliminate the overhead of JVM object model and garbage collection.
 - **Cache-aware computation**: algorithms and data structures to exploit memory hierarchy.
 - **Code generation**: using code generation to exploit modern compilers and CPUs.
The overheads of Java objects

“abcd”

- Native: 4 bytes with UTF-8 encoding
- Java: 48 bytes

<table>
<thead>
<tr>
<th>java.lang.String object internals:</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFFSET SIZE TYPE DESCRIPTION</td>
<td></td>
</tr>
<tr>
<td>0 4 (object header)</td>
<td>...</td>
</tr>
<tr>
<td>4 4 (object header)</td>
<td>...</td>
</tr>
<tr>
<td>8 4 (object header)</td>
<td>...</td>
</tr>
<tr>
<td>12 4 char[] String.value</td>
<td></td>
</tr>
<tr>
<td>16 4 int String.hash</td>
<td>0</td>
</tr>
<tr>
<td>20 4 int String.hash32</td>
<td>0</td>
</tr>
</tbody>
</table>

Instance size: 24 bytes (reported by Instrumentation API)
Use sun.misc.Unsafe

- JVM internal API
- Can manipulate memory without safety checks
- Null bits
- Inline fixed-length values
- Align on 8-byte word boundaries
The Phoenix Approach

- SQL compiler and execution engine for HBase
 - Query engine transforms SQL into native HBase APIs: put, delete, parallel scans (instead of, say, MapReduce)
- Supports features not provided by HBase: Secondary Indexing, Multi-tenancy, simple Hash Join, etc.
Phoenix Architecture
Open (Research) Challenges
Challenge 1: Query optimization

- Cost-based optimizer relies on
 - Statistics over base relations
 - Formulas for cost estimation
 - Rules for plan enumeration

- Problems:
 - Stats not reliable, do not own the data
 - Prominent use of UDFs
 - Independence assumption between predicates do not hold
 - More nested data, harder to estimate selectivities
 - Bad plans over big data may run “forever”

Defer more cost-based decisions to run-time; robust, adaptive query optimization
Challenge 2: Multi-framework environment

- No single framework owns the data!
- Multiple frameworks, with different resource requirements

- How to share the data?
- How to share resources?
- How to work together seamlessly?
Challenge 3: Transactions and analytics in one system

- HDFS is a problem for transactional workloads
 - Workarounds do not lend itself to high-performance OLAP
 - Object-stores
- Interesting combinations are emerging
 - Hive LLAP + Phoenix, Splice Machine + Spark
- Need more tightly integrated solutions
- Need an updatable, fast, distributed file system
References

- http://www.slideshare.net/enissoz/hbase-and-hdfs-understanding-filesystem-usage
- Hive on spark. https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark
 #tabbable=0&tab1=0&tab2=0.
References (cont.)

References (cont.)

References (cont.)

 http://databasearchitects.blogspot.com/2014/05/vectorwise-goes-hadoop.html.

References (cont.)

References (cont.)

- J. Shi, Y. Qiu, U. F. Minhas, L. Jiao, C. Wang, B. Reinwald, and F. Özcan, “Clash of the Titans: MapReduce vs. Spark for Large Scale Data Analytics” in PVLDB 8(13), 2015
References (cont.)

- S. Harris, A. Sundararajan, E. Branish, and K. Chen, “Blistering Fast SQL Access to Hadoop using IBM BigInsights 3.0 with Big SQL 3.0”
References (cont.)

- N. Bruno, Y. Kwon, and M-C Wu, “Advanced Join Strategies for Large-Scale Distributed Computation”, in PVLDB 7(13), 2014

- K. Karanasos, A. Balmin, M. Kutsch, F. Özcan, V. Ercegovac, C. Xia, and J. Jackson, “Dynamically optimizing queries over large scale data platforms”, in SIGMOD 2014

Thank you!