
1

2

3

4

5

6
7

8

9

10
11
12
13
14
15
16
17
18
19
20
21

22
23

24

25
26
27
28
29
30
31
32
33
34

COMCOM 2957 No. of Pages 15, Model 5+

12 January 2006 Disk Used Nathan (CE) / PadmaPriya (TE)
ARTICLE IN PRESS
www.elsevier.com/locate/comcom

Computer Communications xxx (2006) xxx–xxx
O
O
F

Agent based middleware infrastructure for autonomous
context-aware ubiquitous computing services

John Soldatos a,*, Ippokratis Pandis a, Kostas Stamatis a, Lazaros Polymenakos a,
James L. Crowley b

a Athens Information Technology, 19,5 km Markopoulo Ave., P.O. Box 68, GR-19002 Peania, Greece
b INRIA Rhone-Alpes, 655 Ave de l’Europe, 38330 Montbonnot-St. Martin, France
E
C
T
E
D
P
R

Abstract

Middleware for ubiquitous and context-aware computing entails several challenges, including the need to balance between transpar-
ency and context-awareness and the requirement for a certain degree of autonomy. In this paper we outline most of these challenges, and
highlight techniques for successfully confronting them. Accordingly, we present the design and implementation of a middleware infra-
structure for ubiquitous computing services, which facilitates development of ubiquitous services, allowing the service developer to focus
on the service logic rather than the middleware implementation. In particular, this infrastructure provides mechanisms for controlling
sensors and actuators, dynamically registering and invoking resources and infrastructure elements, as well as modeling of composite con-
textual information. A core characteristic of this infrastructure is that it can exploit numerous perceptual components for context acqui-
sition. The introduced middleware architecture has been implemented as a distributed multi-agent system. The various agents have been
augmented with fault tolerance capabilities. This middleware infrastructure has been exploited in implementing a non-obtrusive ubiqui-
tous computing service. The latter service resembles an intelligent non-intrusive human assistant for conferences, meetings and presen-
tations and is illustrated as a manifestation of the benefits of the introduced infrastructure.
� 2006 Published by Elsevier B.V.

Keywords: Middleware; Autonomic computing; Pervasive computing; Ubiquitous computing; Context-awareness; Smart spaces
R

35
36
37
38
39
40
41
42
43
44
45
46
U
N
C
O
R1. Introduction

Middleware deals with the coordination, cooperation
and interoperability of distributed components through
bridging the gap between applications and their underlying
low-level software and hardware infrastructure. Moreover,
it facilitates integration of components in distributed heter-
ogeneous environments. Middleware systems and architec-
tures are becoming increasingly important as networks,
services and applications become more complex. These
architectures provide a basis for tackling stringent require-
ments regarding faster development and cost-effective oper-
47
48
49
50
51

0140-3664/$ - see front matter � 2006 Published by Elsevier B.V.

doi:10.1016/j.comcom.2005.11.018

* Corresponding author.
E-mail addresses: jsol@ait.edu.gr (J. Soldatos), ipan@ait.edu.gr

(I. Pandis), ksta@ait.edu.gr (K. Stamatis), lcp@ait.edu.gr (L. Polymena-
kos), James.Crowley@inrialpes.fr (J.L. Crowley).
ation. The latter requirements expand the scope of
middleware to address not only faster development,
deployment and integration, but also cost-effective systems
operation and management. To this end, emphasis is put
on designing, developing and deploying active systems,
which feature autonomic existence and are commonly clas-
sified as autonomic. Autonomic computing systems possess
several characteristics including that they are self-defining,
self-configuring, self-optimizing, self-healing, context-
aware and anticipatory. Middleware services and architec-
tures are gradually evolving to support autonomic comput-
ing systems [1].

Several research issues come into foreground, when it
comes to supporting the visionary, yet constantly evolving
ubiquitous computing paradigm [2]. Ubiquitous computing
services aim at exploiting the full range of sensors and net-
works available to transparently providing services, regard-

mailto:jsol@ait.edu.gr
mailto:ipan@ait.edu.gr
mailto:ksta@ait.edu.gr
mailto:lcp@ait.edu.gr
mailto:James.Crowley@inrialpes.fr


T

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

142
143

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

2 J. Soldatos et al. / Computer Communications xxx (2006) xxx–xxx

COMCOM 2957 No. of Pages 15, Model 5+

12 January 2006 Disk Used Nathan (CE) / PadmaPriya (TE)
ARTICLE IN PRESS
U
N
C
O
R
R
E
C

less of time and end user’s location [3,4]. A core character-
istic of pervasive and ubiquitous computing systems is that
they are context-aware, in the sense that they are able to
provide services not only based on information that end
users provide, but also based on implicit contextual infor-
mation [5]. Implicit information is usually derived based
on a rich collection of casually accessible, often invisible
sensors that are connected to a network structure. Apart
from context-awareness, ubiquitous computing systems
feature increased dynamism and heterogeneity, which dif-
ferentiate them radically from traditional distributed sys-
tems. The underlying ubiquitous computing
infrastructures are more sophisticated and bring into fore-
ground issues such as user mobility, disconnection, dynam-
ic introduction and removal of devices, diverse network
connections, as well as the need to blend the physical envi-
ronment with the computing infrastructure [6]. Ubiquitous
computing components are related to autonomic comput-
ing, since autonomy is a key to confronting these challeng-
es. All major pervasive and ubiquitous computing projects
(e.g. [7–11]) have built sophisticated middleware infrastruc-
tures. These projects reveal that middleware for ubiquitous
computing is much more complex comparing to conven-
tional distributed systems. However, they are focused on
a specific set of middleware services facilitating their target
applications. For example, some emphasize on context-
awareness, others on transparent communications and
mobility, while some others concentrate on autonomy. In
this paper we describe a middleware infrastructure address-
ing a wide range of issues entailed in ubiquitous computing
services. Specifically, this infrastructure provides mecha-
nisms for service access, context modeling, control of sen-
sors and actuators, directory services for infrastructure
elements and services, as well as fault tolerance. We
describe this infrastructure with particular emphasis on a
framework for controlling sensors and actuators, as well
as our approach for modeling situation states. Also, we
describe the implementation of this framework over an
agent platform. Overall this middleware infrastructure
allows ubiquitous service developers to focus on the service
logic of the implementation, rather than implementing the
middleware. The various frameworks provide functionality
that can be reused across different ubiquitous computing
services.

Based on the introduced middleware platform, we have
built a prototype ubiquitous computing service, namely the
Memory Jog (MJ), which resembles a smart non-intrusive
assistant for meetings and conferences. This service is built
in the scope of a smart room, which comprises a rich sens-
ing infrastructure comprising multiple sensors. A number
of perceptual components such as for face detection and
recognition, acoustic localization, person tracking and
speech activity detection were implemented over this sens-
ing infrastructure. These perceptual components were
accordingly used to support context-awareness based on
the introduced context modeling approach. In particular,
perceptual components outputs were combined with a view
E
D
P
R
O
O
F

to identifying composite contextual states. Note that per-
ceptual components were wrapped as agents and accord-
ingly integrated to the rest agent based middleware
framework.

The service logic of the Memory Jog made use of the
introduced sensor and actuator control framework with a
view to dynamically discovering hardware and software
elements, and invoking their services. This framework facil-
itated the implementation of the Memory Jog service logic
given that important middleware services were reused.
Indeed, by reusing middleware services the Memory Jog
service developers allocated effort on implementing the ser-
vice logic, paying special attention in usability aspects, such
as the intuitiveness of the user interface and the non-obtru-
sive nature of the service. These aspects were positively
evaluated in the scope of simulation studies with end users.
Main conclusion and results from these studies are also
included in this paper.

The rest of the paper is structured as follows: Section 2
provides a taxonomy of middleware components for ubiq-
uitous computing. Section 3, introduces our overall middle-
ware architecture for ubiquitous computing services and
positions it with respect to other prominent middleware
frameworks for ubiquitous computing. Special emphasis
is paid into describing our approach for context modeling,
as well as a framework for dynamically controlling sensors,
actuators and services. It is also illustrated that this middle-
ware infrastructure was implemented as a distributed multi
agent system. Section 4 describes presents the implementa-
tion of the Memory Jog service based on the introduced
infrastructure. It also reports main results from simulation
studies involving users. Finally, Section 5 summarizes the
paper and outlines the main conclusions.

2. Taxonomy of middleware components for pervasive

computing

Middleware architectures for traditional computing ser-
vices aim at providing complete transparency of the under-
lying technology and their surrounding environment.
While this provides several benefits it is not the ultimate
goal in ubiquitous computing environments. These envi-
ronments target context-awareness, which demands avail-
ability of knowledge and information about the
surrounding environment. At the same time there is also
a need for an appropriate degree of transparency, since this
can reduce software complexity and optimize the use of
system resources. As a result, ubiquitous computing mid-
dleware strives to achieve an optimal balance between
awareness and transparency [2].

Other objectives of middleware architectures and com-
ponents are to ease application developers in exploiting
their capabilities. Efficient middleware architectures facili-
tate structured integration of components based on well-
defined development processes and programming environ-
ments. Note however, that the efficiency of middleware
components is audited based on the quality of their run-



T

164
165
166
167
168
169
170
171
172

173

174
175
176
177
178
179
180
181
182
183
184

185

186
187
188
189
190
191
192
193
194
195
196
197
198

199
200
201
202
203
204
205

206

207
208
209
210
211
212
213
214
215
216
217
218

219

220
221
222
223
224
225
226
227
228
229
230
231
232
233

J. Soldatos et al. / Computer Communications xxx (2006) xxx–xxx 3

COMCOM 2957 No. of Pages 15, Model 5+

12 January 2006 Disk Used Nathan (CE) / PadmaPriya (TE)
ARTICLE IN PRESS
R
R
E
C

time services. As a result, middleware enables the coopera-
tion between development support and runtime services.
This cooperation is particularly difficult in the scope of per-
vasive computing, given that middleware components
expose multiple interfaces to different application level
components, while also providing a multi-facet runtime
support. In particular, components supporting ubiquitous
computing can be classified according to their functional-
ity, as illustrated in the following paragraphs.

2.1. Transparent ad hoc communication

Middleware components in ubiquitous computing pro-
vide transparent communication between the diverse sen-
sors and devises engaged in the computing infrastructure
(e.g., cameras, microphone, computers, PDAs, smart
phones). Middleware components abstract the details of
communication channels and protocols and achieve inter-
operability regardless of the underlying network infrastruc-
ture. As devices are added and/or removed from the
network, systems and applications are notified. Publish-
subscribe mechanisms and popular XML messaging proto-
cols can be employed to this end.

2.2. Capture and transfer of sensor streams

Capturing sensor data is a prerequisite to obtaining
information about the surrounding environment. To this
end, low level middleware components interface with the
various sensors in order to obtain raw sensor data. Such
components include a rich set of capture drivers for differ-
ent sensors.

In the scope of ubiquitous computing applications, raw
sensor data is processed towards extracting context cues. In
most cases this processing is performed at different com-
puting platforms that the host capturing data (Fig. 1). This
is mainly due to the need to exploit distributed computa-
tional power given that sensor processing might be compu-
tationally demanding. Therefore, there is a need for
U
N
C
O

Network

Audio
Stream

Audio
Processing

Video
Processing

Fig. 1. Capture, transfer and distribu
E
D
P
R
O
O
F

additional components undertaking the graceful transfer
of sensor streams across the network for distributed pro-
cessing. Representative components falling in this category
are high performance sockets ensuring quality of service in
the delivery of sensor data. A prominent example of such a
middleware infrastructure is the NIST Smart Flow System
[12,13].

2.3. Raw signals processing

Raw sensor data is processed and contextual informa-
tion relating to location, identity and activity is obtained.
Such information constitutes a form of elementary context,
but it is important since it can serve as an anchor to deriv-
ing additional information [3]. Collecting elementary con-
text hinges on middleware components performing
computationally complex signal processing on the sensor
data (e.g., audio, visual streams). Such middleware compo-
nents include a wide range of perceptual technologies (e.g.,
person and object identification, people and object track-
ing, multimodal interactions, speech recognition, body
tracking).

2.4. Context acquisition – situation recognition

Context-awareness in ubiquitous computing is not limit-
ed to identifying people, objects and their locations. On the
contrary, the emphasis is on identifying situations com-
posed of multiple forms of elementary context. As a result,
middleware components for modelling and dynamically
detecting situations are important to any non-trivial ubiq-
uitous computing service. Conventional programming lan-
guages provide limited or no support for context-
awareness. Furthermore, technologies providing support
for context-awareness are likely to present differences
across different programming languages. This creates por-
tability problems for context-sensitive applications, which
middleware architectures attempt to solve. Thus, middle-
ware must provide a uniform and common way to express
Microphone
Array

Audio
Capture

Video
Capture

Camera

ted processing of sensor streams.



T

234
235
236

237

238
239
240
241
242
243
244
245
246
247
248
249

250

251

252
253
254
255
256
257
258
259
260

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

4 J. Soldatos et al. / Computer Communications xxx (2006) xxx–xxx

COMCOM 2957 No. of Pages 15, Model 5+

12 January 2006 Disk Used Nathan (CE) / PadmaPriya (TE)
ARTICLE IN PRESS
C

the software’s context-awareness with minimal dependen-
cies on specific languages, operating systems, sensors or
environment.

2.5. Decision making – context triggered service logic

Context acquisition and situation recognition constitute
prerequisite steps in implementing the service logic. Service
logic in traditional applications is triggered on-demand
paradigm, i.e., upon users’ requests. This paradigm is
essentially augmented in the scope of ubiquitous comput-
ing applications, since the service logic can also be triggered
automatically, based on the current context. Automatic
triggering may involve adapting to the new environment,
notifying the user, as well as communicating with other
computers or devices to exchange information. Context-
triggered service logic is a foundation for non-intrusive
services.

3. Middleware infrastructure for ubiquitous computing

3.1. Related work

This section presents key elements of a middleware
infrastructure devised and developed in the Computers in
the Human Interaction Loop (CHIL) project [14], with a
view to easing service development and application integra-
tion. CHIL emphasizes on the development of ubiquitous,
context-aware services in in-door environments, which are
equipped with numerous sensors (i.e., microphones and
cameras). These environments are conveniently called
‘smart rooms’. Fig. 2 depicts the floor plan of one of the
U
N
C
O
R
R
E 293

294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

Fig. 2. Floor plan and sensors of the Athens Information Technology
Smart Room.
E
D
P
R
O
O
F

four smart rooms that have been setup in the CHIL pro-
ject, namely the Athens Information Technology smart
room. Services developed in these smart rooms comprise
a large number of perceptual middleware components
(such as recognition and localization algorithms), which
provide contextual information on people and objects’
identity and location. Specifically, CHIL service developers
exploit a wide range of perceptive interface components
including a rich collection of 2D-visual components (i.e.,
person localization and tracking, body detection, head ori-
entation, face detection and recognition), 3D-visual percep-
tual components (i.e., person tracking, gesture/posture
recognition, head & hand tracking using stereo cameras,
pointing gesture recognition using stereo cameras), acous-
tic components (i.e., speech recognition (including far-
field), source localization, speech detection, speaker identi-
fication, acoustic emotion recognition, acoustic event clas-
sification, beamforming), as well as audio-visual
components (i.e., A/V person tracking, person identity
tracking, activity recognition, AVSR – mouth (lips) obser-
vation, emotion recognition). The middleware infrastruc-
ture presented in this section facilitates integration of
these components, as well as the fusion of their contextual
information with a view to deriving more sophisticated
context. The diversity of these technology components,
the potential sophistication and integration complexity of
the services, as well as the number of collaborating organi-
zations and demonstration sites, pose unique integration
challenges.

All non-trivial ubiquitous and pervasive computing pro-
jects have devised similar middleware infrastructures. The
Interactive Workspaces project at Stanford University [7]
focused on human interaction with devices and large
high-resolution displays. A key challenge in this project is
the coordination of multi-modal, multiuser and multi-de-
vice applications in different contexts. To this end the pro-
ject has developed the Interactive Room Operating System
(iROS) [15], which provides a reusable, robust and extensi-
ble software infrastructure enabling the deployment of
component based ubiquitous computing environments.
IROS supports various modalities and human-computer
interfaces, by tying together devices each one having its
own operating system.

The Oxygen project at MIT concentrates on a pool of
user and system technologies enabling pervasive human-
centered computing. In Oxygen applications special
emphasis is paid on automated, personalized access to
information, adapting the applications to users’ preferences
and needs. In terms of middleware architecture, the Oxy-
gen project has produced the MetaGlue system [10], which
constitutes a highly robust agent platform, where agents
represent both local resources and interactions with those
resources. Metaglue relies on a custom distributed commu-
nication infrastructure enabling agents to run autonomous-
ly from individual applications so they are always available
to service multiple applications. Metaglue is efficient in
implementing autonomous agents that significantly aug-



T

318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

351

352
353

354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391

J. Soldatos et al. / Computer Communications xxx (2006) xxx–xxx 5

COMCOM 2957 No. of Pages 15, Model 5+

12 January 2006 Disk Used Nathan (CE) / PadmaPriya (TE)
ARTICLE IN PRESS
R
E
C

ment the functionality of the space and facilitate user inter-
action. However, it provides no essential support for imple-
menting context-awareness. The latter is addressed in the
GOALS architecture [9], which is the evolution of the
MetaGlue system.

The EasyLiving system developed at Microsoft research
is another prototype ubiquitous computing architecture
[16]. Easy Living focuses both on the coordination of the
devices, but also on exploitation of contextual information.
Specifically, the system employs computer vision technolo-
gies for person-tracking and visual user interaction and
supports context-awareness based on a geometric model
of the world. It uses device-independent communication
and accordingly adapts the user interface.

The Aura system [8] targets pervasive computing envi-
ronments involving wireless communication, wearable or
handheld computers, and smart spaces. Aura provides soft-
ware architectural models that monitor an application and
guide dynamic changes to it. Thus, it provides opportuni-
ties for adapting to varying resources, user mobility, chang-
ing user needs and system faults.

The fact that each of the above projects has built its own
infrastructure manifests that there is no global unified
framework addressing all needs. Architectures tend to con-
centrate on particular application aspects. Some focus on
the co-ordination of physical space and devices (e.g., inter-
active workspaces), others on synchronizing multiple
modalities (e.g., Oxygen), and others on user mobility
and attention (e.g., AURA). Nevertheless, there is no
architecture providing the necessary level of sophistication
for supporting integration of a large number of autonomic
perceptual components, which is a major research chal-
lenge in CHIL.

3.2. Agent platforms

In order to alleviate the complexity of building middle-
ware for ubiquitous computing, we have strived as much as
U
N
C
O
R

Agent

Control Center

Agent

Network

High Performanc

Network Infrastruct
(QoS)

Fig. 3. Combining sensor proces
E
D
P
R
O
O
F

possible to exploit pre-existing platforms and components.
In particular, we have taken advantage of middleware
developments supporting high performance transfer and
processing of streams, context-awareness and situation
detection, transparent ad hoc communication, as well as
autonomic features. These components have, however,
been appropriately customized towards implementing a
dynamic self-resilient infrastructure for provision of servic-
es, along with a powerful mechanism for sophisticated con-
text modeling.

At the heart of our middleware infrastructure implemen-
tation is a distributed agent infrastructure. Agent infra-
structures facilitate the implementation of communication
between distributed entities based on rich semantics (see,
for example [17,18]). Moreover, they ease the implementa-
tion of transparent ad hoc communication between distrib-
uted components. Furthermore, agents provide a certain
degree of autonomy (e.g. [19]), which constitutes a sound
basis for implementing autonomic features.

Software agents lack the capabilities required to sup-
port high performance transfer of sensor streams. Infra-
structures for distributed transfer of sensor streams are
usually built as system level components that do no fea-
ture the high level capabilities of software agents. There
is therefore a need for integrating low level stream trans-
fer middleware with agent capabilities. A prominent way
to achieve this is to wrap low level middleware compo-
nents with agent based middleware, so that they behave
as software agents. The concept is depicted in Fig. 3,
which shows that low level components become part of
the agent infrastructure, as soon as an agent wrapper is
implemented on top of them. As all middleware compo-
nents expose agent behavior, they can be managed based
on a single higher layer interface. Note that in Fig. 3,
middleware components can be distinguished into two
basic sets according to their socket communication capa-
bilities. Higher performance sockets are required for the
distributed transfer of sensor streams, while agents com-
Management Layer

Context Awareness Layer

Agent

Signal
Processing

Agent
Wrapper

e

ure

sing and context-awareness.



T

392
393
394
395

396

397
398
399
400
401
402
403

404
405
406
407
408
409
410
411
412
413
414
415
416

417
418
419
420

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

442
443
444
445
446
447
448
449
450
451
452
453

6 J. Soldatos et al. / Computer Communications xxx (2006) xxx–xxx

COMCOM 2957 No. of Pages 15, Model 5+

12 January 2006 Disk Used Nathan (CE) / PadmaPriya (TE)
ARTICLE IN PRESS
C

municate through conventional socket interfaces. This is
illustrated in the figure in the form of two logically dis-
tinct network infrastructures, which, however, correspond
to the same physical network connectivity.

3.3. Middleware system overview

Fig. 4 depicts an anatomy of a multi-agent framework
supporting the implementation of ubiquitous and perva-
sive computing services. Specifically, this framework pro-
vides a set of functionalities that along with the sensing
infrastructure can be re-used across different ubiquitous
computing services. These functionalities include mecha-
nisms to:

• Control the sensors and actuators of the ‘smart room’.
• Control user access to services.
• Modeling composite contextual states based on combi-
nations of perceptual components.

Several ubiquitous computing services can leverage this
reusable functionality, which allows the service developer
to concentrate on implementing the service logic rather
than the middleware. Apart from this set of reusable com-
ponents and services, the framework implements ‘plugga-
ble’ mechanisms for incorporating additional perceptual
components and sensors.

The framework consists of the following agents types:

• Core Agents: Core agents are independent of the service
and smart room installation independent. They provide
the communication mechanism for the distributed enti-
ties of the system. Moreover, core agents undertake
U
N
C
O
R
R
E

MJA: Memory Jog Agent
CA: Connector Agent

SSWA: Socially Supportive Workspace Ag
ACA: Attention Cockpit Agent

Agent Platform

Personal
Agent

Device
Agent

CHIL User

User Front End

Notebook
Smartphone

PDA

Device
Desktop
Device

Interface

Fig. 4. Middleware infrastructure
the control of the sensing infrastructure, while also
allowing service providers to ‘plug’ service logic into
the framework. Core agents include the:
ent

S

for ub
R
O
O
F

� Device Desktop Agent, which implements the user
interface required for accessing the ubiquitous ser-
vices. A ‘pluggable’ mechanism allows the user inter-
face to be customized to the particular ubiquitous
computing service.
� Device Agent, which enables different devices to
communicate with the framework.
� Personal Agent, which constitutes the proxy of the
end user in the agent world. The personal agent con-
veys user requests to the agent manager, which are
accordingly handled by appropriate agents. It main-
tains the user’s profile in order to personalize the ser-
vices to the end user.
� Agent Manager, which allows the system to be
dynamically augmented with additional Service
Agents. Thus, the Agent Manager allows additional
basic, as well as ubiquitous computing services to be
incorporated to the system.
E
D
P• Basic Services Agents: These agents incorporate the

service logic of basic services, which are tightly cou-
pled with the installed infrastructure of each smart
room. Basic services include the ability to track co-
mposite situations, as well as the control of sensors
and actuators. Tracking of composite situations is
performed through the Situation Watching Agent (-
SWA) (Fig. 4) based on the context modeling appr-
oach discuss in following paragraphs. Also, control
of sensors and actuators is performed through the
Smart Room Agent in a way that is also elaborated
in subsequent paragraphs. Furthermore, a Knowledge
CHIL Agent Manager /
CHIL Service Agent Interface

CHIL Services

CA SSWA ACA

MJ C SSW AC

CHIL Knowledge
Base

Sensors /
Actuators

ituation Modeling
Perceptual

Components/
Sensors

Situation
Watching

Agent

Smart Room
 Agent

Knowledge
Base Agent

MJA

iquitous computing.



T

454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486

487

488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508

509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564

J. Soldatos et al. / Computer Communications xxx (2006) xxx–xxx 7

COMCOM 2957 No. of Pages 15, Model 5+

12 January 2006 Disk Used Nathan (CE) / PadmaPriya (TE)
ARTICLE IN PRESS
U
N
C
O
R
R
E
C

Base Agent, allows the agents of the framework to
dynamically access information on the state of the
components of ubiquitous computing environment (-
e.g., sensors, actuators, perceptual components), thr-
ough a Knowledge Base Server that is supported as
an ontology management system.

• Ubiquitous Service Agents: Ubiquitous service agents
implement the non-obtrusive service logic of the vari-
ous context-aware services. Each ubiquitous computing
service is therefore implemented as a Ubiquitous ser-
vice agent and accordingly plugged into the framework.
In the scope of the CHIL project, several ubiquitous
agents corresponding to various ubiquitous computing
services are implemented and integrated into the fra-
mework. A following section elaborates on the MJ se-
rvice, which is implemented through the Memory Jog
Agent (MJA). Fig. 4, depicts also the Connector Agent
(CA), the Socially Supportive Workspaces Agent (SS-
WA), and the Attention Cockpit Agent (ACA), which
correspond to other CHIL services.

This agent framework has been implemented based on
the Java Agent Development Environment (JADE) plat-
form [20]. In this implementation, agent communication
is realized based on Foundation for Intelligent Physical
Agents (FIPA) primitives [21]. Several aspects of this agent
based middleware framework are described in [22]. More-
over, information about the Knowledge Base and its use
as a directory service for middleware components and ser-
vices is provided in [23]. Following paragraphs describe the
approaches adopted for context modelling and sensor/ac-
tuator control, while also illustrating how agents have been
augmented with autonomic capabilities.

3.4. Context modeling

Context modeling middleware facilitates ubiquitous
computing services with the ability to describe the state
of their surrounding environment, while also providing
mechanisms for accessing this description.

Accordingly, context modeling languages exploit this
middleware to encode the detection of events that are nec-
essary to initiate or terminate service actions. There are
several approaches to modeling situations, which according
serve as basis for implementing context-aware components.

The approach adopted and used along with the agent
middleware infrastructure of the previous paragraph is
based on the notion of networks of situation states [24].
According to this approach a situation is considered as a
state description of the environment expressed in terms of
entities and their properties. A situation is a kind of state
description composed of a conjunction of predicates. Pred-
icates are truth functions that can take on logical or prob-
abilistic values. Situations are defined in terms of an
assignment of observed entities to ‘roles’, the properties
of the entities assigned to roles, and the relations (i.e., rel-
ative properties) of the entities playing roles.
E
D
P
R
O
O
F

Entities have numerical attributes such as position, ori-
entation, size, configuration or external appearance. These
are tracked by perceptual components and can be used to
compute relations. A relation is a predicate (truth) function
computed over the attributes of one or more entities. Rela-
tions may be represented by boolean or probabilistic truth-
values. Each situation is defined in terms of a set of roles
and relations. The concept of role is an important tool
for simplifying the network of situations. It is common to
discover a collection of situations for an output state that
have the same configuration of relations, but where the
identity of one or more entities is varied. A role serves as
a ‘variable’ for the entities to which the relations are
applied, thus allowing an equivalent set of situations to
have the same representation. A role is played by an entity
that can pass an acceptance test for the role, in which case,
it is said that the entity can play or adopt the role for that
situation.

A situation model describes activity using a network of
situations. Such a model specifies the entities, properties
and relations that must be observed towards triggering
the service logic. Changes in individual or relative proper-
ties of specified entities correspond to events that signal a
change in situation. For example, in the scope of a meet-
ing involving short presentations, at any instant, one per-
son plays the ‘role’ of the ‘presenter’, while the other
persons play the role of ‘attendees’. Dynamically assign-
ing a person to the role of ‘presenter’ makes it possible
to select perceptual component to acquire images and
sound of the current speaker. Detecting a change in some
role allows the system to reconfigure the video and audio
acquisition systems.

Situation models determine the entities to observe, the
properties to measure and the events to detect, and thus
specify the selection and configuration of perceptual com-
ponents (i.e., components realizing lower level signal pro-
cessing). Accordingly, perceptual component outputs can
be combined to identify situation states of the situation
model, as shown in Fig. 5.

An example of a situation model targeting context-
awareness for meeting activities involving an agenda and
presentation is depicted in Fig. 6. This model signifies the
importance of the following events with respect to a
meeting:
• Commencement of the meeting.
• Start of the presentation on a particular agenda item
(i.e., session of the meeting).

• Questions on each of the presentations.
• End of the presentation.
• End of the meeting.

Moreover, this model defines possible sequences of
occurrence for these events, based on the arcs connecting
the various situations. The context-aware middleware
encoding this situation model makes provisions for both
recognizing situation and situation transitions, but also



565
566
567
568
569
570

571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598

Situation Recognizer

S

PC1 PCn

CPC 2CPC 1

Fig. 5. Situation detection.

8 J. Soldatos et al. / Computer Communications xxx (2006) xxx–xxx

COMCOM 2957 No. of Pages 15, Model 5+

12 January 2006 Disk Used Nathan (CE) / PadmaPriya (TE)
ARTICLE IN PRESS
for triggering service logic associated with each of these
situations.

Describing context as a network of situations may seem
limiting and not scalable, mainly because it is unlikely to
capture rich context based on a small set of situation states.
Nevertheless, a situation model can be dynamically extend-
U
N
C
O
R
R
E
C
T

Fig. 6. A sample si
E
D
P
R
O
O
F

ed as new types of relations between entities are identified.
Furthermore, there is always a possibility for making use of
more than situation models in the scope of an application.
Extending the situation model dynamically, while also
dynamically switching between more than one model pro-
vides significantly more expressing power.

The network of situations approach has been imple-
mented in the Situation Watching Agent of our framework.
In particular, the Situation Watching Agent parses situa-
tion models that are expressed in XML format. Each situ-
ation model reveals the perceptual components and their
configuration required to identify each state of the model.
Once a situation model is loaded to the Situation Watching
Agent (based on an appropriate XML file), the Situation
Watching Agent parses the model and identifies the percep-
tual components required to track the states of the model.
Accordingly, the SWA conveys requests for subscribing to
these perceptual components to the Perceptual Compo-
nents Wrapper Agent (PCWA). The PCWA queries the
directory services (i.e., the knowledge base) to dynamically
discover the properties and configuration of perceptual
components, and then subscribes to them. The required
perceptual components provide input to the PCWA, which
acts also as a manager of these subscriptions. As the per-
ceptual components send their output to the PCWA, the
latter filters these outputs according to the properties of
the subscription and forwards them to the SWA. The
whole process is illustrated in Fig. 7. Thus, the Situation
tuation model.



T

O
O
F

599
600
601

602
603

604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634

635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672

Fig. 7. Combining perceptual components to identify situation model states.

J. Soldatos et al. / Computer Communications xxx (2006) xxx–xxx 9

COMCOM 2957 No. of Pages 15, Model 5+

12 January 2006 Disk Used Nathan (CE) / PadmaPriya (TE)
ARTICLE IN PRESS
U
N
C
O
R
R
E
C

Watching Agent acts as a context broker, which is a quite
common approach in context-aware architectures for
smart spaces.

3.5. Agent based service oriented infrastructure – sensor and
actuator control

The introduced middleware infrastructure provides a
common interface (API) for accessing and controlling the
various hardware elements (i.e., sensors and actuators).
To this end, sensor and actuators register with the directory
service provided by the Knowledge Base Service. Sensor
and actuator meta-data, which are registered within the
knowledge base server, include information about the ven-
dor, the model, the status, interfaces, capabilities, as well as
the network addresses of the device. From an implementa-
tion perspective, we have concentrated on registering the
two main types of sensors that exist in our smart room
(Fig. 2), namely microphones and cameras. Thus, we have
implemented three distinct proxy agents for these devices:
one generic, one for microphones and one for cameras.
The main responsibilities of these proxies are to:
• Represent sensors and actuators in the world of agents
and provide access to the rest of the framework.

• Interact with the directory service of the knowledge
base.

For each new device (i.e., sensor or actuator) that is
installed in the room, a new proxy agent is instantiated
as a mean to controlling the device. This proxy agent con-
stitutes an agent wrapping to the device control capabili-
ties. Upon the initialization of the device, the proxy agent
is responsible for registering it with the knowledge base.
Accordingly, it updates the indicated operational state
of the device in the registry (for example, when the device
shuts down or restarts). Finally, it translates requests
from other agents of the framework, to device-specific
calls.
E
D
P
RSimilarly to the infrastructure elements the framework

controls various infrastructure specific (auxiliary) services.
Developers of ubiquitous computing applications use the
framework to dynamically access information on the
available value-adding services installed in the infrastruc-
ture. Prominent examples of such services include a
text-to-speech (TTS) service, a display, and a targeted
audio service. Information about these services is regis-
tered using a proxy agent, similar to the case of sensor
and infrastructure elements registration. The mechanism
is illustrated in Fig. 8. A wrapper agent represents the ser-
vices available to the agent platform, enables communica-
tion with the rest of the framework, translates requests
from the various clients to service-specific calls and inter-
acts with the knowledge base. This wrapper agent pro-
vides another level of abstraction. Specifically, all
services that provide the same functionality (e.g., all
TTS services) are wrapped by a service proxy of the same
type (e.g., a TTS proxy). This service specific proxy han-
dles all requests for that service, being also responsible to
forward them to specific implementations and machines
that host this service. The service proxy retrieves also
dynamically information (from the knowledge base) about
the existence, the properties and the operational status of
the available services. In the case where there is no avail-
able provider of this service and the proxy declares inca-
pable of fulfilling the request.

Note that the particular algorithm for selecting a service
implementation depends on the targets and goals of the
overall ubiquitous computing service. For example, a
TTS service instance, as well as a display service instance
may be selecting by the corresponding proxies based on a
variety of criteria involving people locations an orientation
within the smart room.

Fig. 8 illustrates the implemented registration mecha-
nism enabling discovery and manipulation of services and
infrastructure elements. The mechanism involves the fol-
lowing steps:



T

R
O
O
F

673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696

697

698
699
700
701
702
703
704
705
706

707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742

Fig. 8. Registration, dynamic discovery and invocation for the services of the system.

10 J. Soldatos et al. / Computer Communications xxx (2006) xxx–xxx

COMCOM 2957 No. of Pages 15, Model 5+

12 January 2006 Disk Used Nathan (CE) / PadmaPriya (TE)
ARTICLE IN PRESS
U
N
C
O
R
R
E
C

• The proxy of a specific service registers into the system
(step A).

• All the providers of this specific service also register t-
hemselves into the system (step B).

• When clients want request a particular service invoca-
tion, they send a request to the gateway for all the se-
rvices (step 1), which is a dedicated agent and is called
the Smart Room Agent (SRA).

• The SRA searches the registry in order to see if there is
a proxy for such a service (step 2).

• Assuming that a proxy is found it forwards the request
to it (step 3).

• When the service proxy receives a new request, it che-
cks the registry to find available service providers (st-
ep 4).

• A selection algorithm is used to decide to which service
provider to forward the request. Following the selec-
tion the request finally is received and served by a ser-
vice provider (step 5).

Note that the all information is dynamically looked up
at the knowledge base. This is performed to support for
service providers dynamically coming into and going out
of the system.

3.6. Autonomic features

Agent platforms support certain autonomic features of
a distributed system, including the abilities to persist,
clone and move (migrate) components to other hosts.
However, there is also a need to implement application
specific functionality for discovering agent deficiencies,
since the later are differently defined in the scope of an
application.

Based on the JADE platform we augmented all agents
of the framework with the capability of querying agent
E
D
Pcomponents about their status. Thus, we implemented a

‘ping’-like functionality for all agents of the framework.
Moreover, as agents discover the status of other agent
entities, we have implemented functionality enabling
agents to adapt their behavior to the status of other
agents. This is particularly important in the case where
the availability of an agent entity is a prerequisite for
the operation of others. Specifically, in the middleware
framework presented in Fig. 4, several agents depend on
others. For instance, the Situation Watching Agent relies
on underlying wrappers of perceptual components to sup-
port situation recognition. In general, an agent has a set of
dependencies expressed as a dynamic list of other agents.
As a first step to ensuring autonomy and maximum ser-
vice availability of the system, we implemented functional-
ity allowing every agent to keep track of the list of its
dependants and accordingly adapt its functionality. Adap-
tation results in downgrading or upgrading the functional-
ity and features offered by the particular agent, depending
on the availability of other agents.

As a second step to autonomy we provided middleware
for self-healing functionality. This was achieved through
migrating dependant agents to a different execution envi-
ronment (e.g., machine or agent container) upon detection
of problems with their availability. To this end the migra-
tion process is combined with the detection (‘ping’) func-
tionality outlined above. Agent migration is undertaken
from another entity that is able to detect the problem.
The delegation of this entity is implemented based on
either an Autonomic Manager agent entity, which under-
takes the role of migrating and restarting agents. The
autonomic manager exploits the ‘ping’ functionality to
detect failing agents. Fig. 9 depicts the state diagram of
an agent incorporating autonomic functionality. This
agent ‘pings’ dependant agents and accordingly modifies
its state.



T
743

744

745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760

761
762

763
764
765
766
767
768
769
770
771
772
773
774

775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831

Fig. 9. Pinging dependent agents and agent migration.

J. Soldatos et al. / Computer Communications xxx (2006) xxx–xxx 11

COMCOM 2957 No. of Pages 15, Model 5+

12 January 2006 Disk Used Nathan (CE) / PadmaPriya (TE)
ARTICLE IN PRESS
U
N
C
O
R
R
E
C

4. Ubiquitous computing application implementation

4.1. Overview of the Memory Jog service

The middleware infrastructure outlined in the previ-
ous section served as a basis for implementing ubiqui-
tous computing services. In the sequel we present the
implementation of an application constituting a non-in-
trusive assistant for events such as lectures, meetings,
presentations occurring in in-door environments. The
primary function of this assistant is to track context
and provide pertinent information facilitating humans
to accomplish tasks during these events. Since provision
of pertinent information serves as a memory aid to
humans, we conveniently call this ubiquitous computing
service ‘Memory Jog’ (MJ). The MJ resembles a con-
text-aware conference assistance [25] and has been
selected for studying computing services based on
implicitly derived information in the scope of the CHIL
project.

4.2. Distributed multi-agent implementation of the Memory

Jog

The MJ service was implemented in the smart room
depicted in Fig. 2, which consists of:
• One 64 channel microphone array [26].
• Microphones for localization, in particular three clus-
ters, each consisting of four microphones.

• Four fixed cameras, used for overall monitoring of the
room.

• One active camera with pan, tilt and zoom (PTZ
camera).

• A panoramic (or fish-eye) surveillance camera.
E
D
P
R
O
O
F

The service implementation takes advantage of the mid-
dleware infrastructure depicted in Fig. 4. At the lowest
level of this infrastructure, perceptual components process
sensor streams. To this end, middleware capturing data
from all available sensors has been produced. Captured
data are made available for processing in any of the sys-
tems, based on the distributed NIST Smartflow middle-
ware (NSFS). Hence, the NSFS system constitutes the
solution adopted for high performance transport of
streams.

Perceptual processing of sensor data is based on the fol-
lowing components technologies that have been developed
in our lab:
• Acoustic identification and localization of the speaker
[27].

• Face Detection, Recognition and People tracking
[28,22].

• Detection of speech activity.

Perceptual processing is computationally demanding.
Therefore, perceptual components are implemented in
low-level high performance languages (i.e., C/C++), and
wrapped as JADE agents in line with the notion illustrat-
ed in Fig. 3. Wrapping was implemented through a per-
ceptual components wrapper agent, as shown in Fig. 9.
Accordingly, we combined perceptual components in
order to create higher level perceptual components that
can track situations as illustrated in Fig. 5. Fig. 10 depicts
how elementary components tracking the agenda, identi-
fying speech activity, identifying faces and recognizing
people are used to form composite perceptual components
that keep track of the status of a whiteboard and the
meeting room table, with respect to the meeting partici-
pants. The higher level ‘Table Watcher’ and ‘White-board

Watcher’ perceptual components are accordingly use to
track situations.

The situations to be tracked are driven by the situation
model depicted in Fig. 6. This situation model is loaded in
the Situation Watching Agent based on an XML file
describing the model. This XML format specifies the per-
ceptual components output combinations leading to detect-
ing a particular situation. These combinations are also
described in Table 1, which specifies the perceptual compo-
nents values that determine the transition to each one of
the contextual states of the situation model.

The subscription mechanism illustrated in Fig. 7, was
exploited to detect situations and triggering the service log-
ic. The service logic of the MJ service was based on a wide
range of services offered within the smart room. Smart
room services were implemented based on the introduced
sensor, services and actuator control framework. Specifi-
cally, the following services were implemented based on
this framework: (a) a TTS (Text-to-Speech) service, (b) a
slide show/display service and (c) a storage service allowing
access to a relational database. These services were invoked
by the service logic, either based on current context, or
upon end users’ requests. The latter requests can be issued



E
C
T
E
D
P
R
O
O
F

832
833
834
835

836

837
838
839
840
841
842
843
844
845
846
847
848
849
850

851

852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870

Fig. 10. Perceptual components supporting the situation model.

Table 1
Identifying composite contextual states through combining perceptual components’ outputs

Situation transition Combinations of perceptual components outputs

NILfi S1 TableWatcher = N (N people in table area) and Speech Activity (SAD = true)
S1fi S2 WhiteboardWatcher = 1 (1 person in speaker area), TableWatcher = N � 1 (N � 1 people in table area)
S2fi S3 Acoustic Localization (Table Area)
S3fi S2 Acoustic Localization (Speaker Area)
S2fi S4 WhiteboardWatcher = 0 (no person in speaker area), TableWatcher = N (N people in table area)
S4fi S5 TableWatcher = 0 (no people in table area)

12 J. Soldatos et al. / Computer Communications xxx (2006) xxx–xxx

COMCOM 2957 No. of Pages 15, Model 5+

12 January 2006 Disk Used Nathan (CE) / PadmaPriya (TE)
ARTICLE IN PRESS
U
N
C
O
R
Rby a graphical user interface that is used by the end user to

visualize MJ information, as well as to allow interaction
with the smart room. A snapshot of this interface is provid-
ed in Fig. 11.

4.3. Autonomic features

All these agent types extend the same agent class, which
realizes transparent communication capabilities, subscrip-
tions, poling, as well as agent discovery and communica-
tion. In order to ensure the autonomic functionality of
the overall system, we augmented our basic JADE agent
class with additional failure detection and healing function-
ality as outlined in the previous section.

Autonomic functionality was implemented as an addi-
tional layer over the basic JADE functionality (Fig. 12).
Therefore, all agent types described above we endowed
with healing capabilities since they were based on the
same augmented version of JADE agent. Therefore,
autonomy constitutes a vertical pillar of all distributed
entities.
4.4. Users evaluation

The overall implementation of the MJ service confront-
ed a host of technical challenges as outlined above. Apart
from technical challenges however, ubiquitous services
need to take into account user issues, with a view to ensur-
ing that services are appealing to end users. User accep-
tance is a hot issue for non-obtrusive services, given that
the vast majority of end users are not acquainted with
the emerging context-aware computing paradigm.

In order to evaluate the MJ service prototype in terms of
user acceptance, we performed two simulations studies. In
each case one potential end-user (‘the subject’) was asked
to use the MJ service along with members of the design
team who played as actors in the scenario. The subject of
the study was well briefed on the CHIL project, the partic-
ular scenario and the background to the MJ service. Mem-
bers of the design team configured the scenarios and made
observations relating to the end user’s behavior. Upon
completion of each simulated scenario the user was inter-
viewed to gain feedback about the service usability, the



R
E
C
T
E
D
P
R
O
O
F

871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890

891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919

Fig. 11. A snapshot of the Memory Jog user interface.

AUTONOMIC MIDDLEWARE

Base Agent

Autonomic Layer

Application

Fig. 12. Enhancing software agents with autonomic functionality.

J. Soldatos et al. / Computer Communications xxx (2006) xxx–xxx 13

COMCOM 2957 No. of Pages 15, Model 5+

12 January 2006 Disk Used Nathan (CE) / PadmaPriya (TE)
ARTICLE IN PRESS
U
N
C
O
Rpotential impact of the service, as well as to get ideas about

possible improvements and additions to the service.
Both scenarios occurred in the room depicted in Fig. 2.

The first scenario involved a simple presentation with two
participants. The purpose of this scenario was to provide
a fictional example according to which the initial service
prototype was designed. As such the context is not neces-
sarily one that would occur in the real world. It involves
two developers in the room and one developer who is a vir-
tual participant and is not physically present in the room.
The presentations were about recent work that each of
the participants has done.

The second scenario involved a meeting, where partici-
pants aimed at reporting the progress of their work on a
project. In particular, this involved a regular progress
meeting of four developers and a project manager, in which
each member of the team presents the latest developments
in their work. A member of the administration of the insti-
tution also attends the meeting as new hardware and soft-
ware needs to be purchased and they are responsible for
approving the purchase. The regular meeting is also used
to address high-level project management a system design
issues.

The simulation studies revealed several issues with
respect to the service prototype. As far as the intuitiveness
of the user interface is concerned, the interface was gener-
ally perceived as being user friendly. Also, the information
displayed was easily understood and accessed. However,
users declared that certain features (e.g., the search button)
need to be made more obvious.

With respect to the level of interaction and obtrusiveness
of the MJ service, the current functionality was perceived
not to be overly intrusive in that it did not require a great
deal of user input to respond to and adapt to the progress
of the event. Recommendations were made, however, to
make changes more obvious when they occur. A suggested
way to achieve this was the use of interactive timed pop-up
info boxes.

End users suggested also additional functionalities, such
as the ability to view the presentation slides through the
interface, and to possibly make personal annotations on
the slides. Moreover, users asked for pop-up or audio
reminders about the timing of the event, so that speakers
are reminded of when their time is running out. More triv-
ial recommendations concerned showing a reminder at the
end of the event as to when the next event in a sequence is
scheduled, as well as to who should attend. These sugges-
tions will be seriously taken into account into designing
the next version of the MJ service.



T

920

921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975

976

977
978
979
980
981
982
983
984
985
986

987

988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037

14 J. Soldatos et al. / Computer Communications xxx (2006) xxx–xxx

COMCOM 2957 No. of Pages 15, Model 5+

12 January 2006 Disk Used Nathan (CE) / PadmaPriya (TE)
ARTICLE IN PRESS
U
N
C
O
R
R
E
C

5. Conclusions

Middleware architectures boost rapid application devel-
opment in the scope of complex and heterogeneous net-
work and computing infrastructures. The increasingly
important role of middleware components is intensified,
when it comes to addressing ubiquitous computing applica-
tions and services. Middleware infrastructures for such
applications impose a need for balancing between transpar-
ency and context-awareness, while at the same time tack-
ling with more sophisticated environments in terms of
hardware and software. Furthermore, a ubiquitous com-
puting application asks for a wide range of runtime services
such as context-awareness, sensor streams capturing, trans-
fer and processing, dynamic service discovery and invoca-
tion, as well as autonomic capabilities.

In supporting these features, a host of middleware com-
ponents have to be implemented and integrated. Agent
platforms provide a sound foundation for implementing
such runtime services in a distributed environment. In this
paper we have introduced an agent based middleware
framework, which can ease the implementation of sophisti-
cated context-aware services in appropriately configured
in-door environments (called ‘smart rooms’). Smart rooms
comprise a rich set of video and acoustic sensors, enabling
several perceptive interfaces to operate and provide ele-
mentary context cues. The introduced agent framework
provides functionality for service access control, personali-
zation, context modeling, as well as of dynamic control and
management of sensors and actuating devices. Context
modeling relies on the network of situations approach,
which allows composite contextual states to be detected
and tracked based on a combination of perceptual compo-
nents outputs. The sensor and actuator control framework,
allows ubiquitous computing services to dynamically access
information on the status of infrastructure elements, as
well as to invoke their services. Moreover, the agent frame-
work has been augmented with fault tolerance capabilities
ensuring that failures are timely detected and restored.

Based on this agent framework, we have implemented
the Memory Jog, an intelligent non-obtrusive service pro-
viding pertinent information and assistance in the scope
of meetings, seminars and presentations. This implementa-
tion has leveraged the capabilities of the agent based frame-
work, therefore allowing the service developer to focus on
the service logic implementation rather than the middle-
ware. In implementing this service we have taken advan-
tage of a wide range of perceptive interfaces including
face detection, face recognition, person tracking (both visu-
al and acoustic), as well as speech activity detection. The
corresponding perceptual components have been used to
trigger a simple situation model, which has been encoded
into the agent framework. Following situation detection,
the Memory Jog leverages the sensor, service and actuator
control framework to invoke TTS services, display services,
as well as storage services allowing the retrieval of past
information relating to the current contextual state.
E
D
P
R
O
O
F

Acknowledgements

This work is part of the FP6 CHIL project (FP6-
506909), partially funded by the European Commission un-
der the Information Society Technology (IST) program.
The authors acknowledge valuable help and contributions
from all partners of the project, especially from partici-
pants in Work-package 2 dealing with the architecture
and software infrastructure supporting the CHIL services.
Special thanks also to Michael Carras, Dr. Pnevmatikakis
and Dr. Talantzis for their valuable contribution in setting
up and configuring our smart room infrastructure.

References

[1] G. Tesauro, D.M. Chess, W.E. Walsh, R. Das, A. Segal, I. Whalley,
J.O. Kephart, S.R. White, A multi-agent systems approach to
autonomic computing, in: Proceedings of the Third International
Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS’04), vol. 1, New York City, New York, USA, July 19–23,
2004, pp. 464–471.

[2] S.S. Yau, F. Karim, Y.Wang, B.Wang, S.K.S. Gupta, Reconfigurable
context-sensitive middleware for pervasive computing, in: IEEEPerva-
siveComputing,jointspecial issuewithIEEEPersonalCommunications
on Context-A ware Pervasive Computing, 1(3), July–September 2002,
IEEEComputer Society Press, Los Alamitos, USA, pp. 33–40.

[3] M. Weiser, The Computer for the 21st Century, in: Scientific
American, vol. 265, no. 3, 1991, pp. 66–75.

[4] A.K. Dey, D. Salber, G.D. Abowd, A conceptual framework and a
toolkit for supporting the rapid prototyping of context-aware
applications, in: Human-Computer Interaction 16, 2001.

[5] A.K. Dey, Understanding and using context, in: Personal and
Ubiquitous Computing Journal, vol. 5(1), 2001, pp. 4–7.

[6] A. Murphy, G. Picco, G.-C. Roman, LIME: a middleware for
physical and logical mobility, in: Proceedings of the 21st International
Conference in Distributed Computing Systems, IEEE CS Press, Los
Alamitos, CA, 2001, pp. 524–533.

[7] B. Johanson, A. Fox, T. Winograd, ‘The interactive workspaces
project: experiences with ubiquitous computing rooms’, IEEE Perva-
sive Comput. Mag. 1 (2) (2002) 67–75.

[8] D. Garlan, D. Siewiorek, A. Smailagic, P. Steenkiste, Project Aura:
Towards distraction-free pervasive computing, IEEE Pervasive
Comput., 2002, pp. 22–31.

[9] U. Saif, H. Pham, J.M. Paluska, J. Waterman, C. Terman, S. Ward,
A case for goal-oriented programming semantics, in: System Support
for Ubiquitous Computing Workshop at the 5th Annual Conference
on Ubiquitous Computing (UbiComp ’03), 2003, pp. 74–83.

[10] M. Coen, B. Phillips, N. Warshawsky, L. Weisman, S. Peters, P.
Finin, Meeting the computational needs of intelligent environments:
the metaglue system, in: 1st International Workshop on Managing
Interactions in Smart Environments (MANSE’99), Dublin, Ireland,
December 1999, pp. 201–212.

[11] B. Brumitt, J. Krumm, B. Meyers, S. Shafer, Ubiquitous computing
and the role of geometry, in: IEEE Pers. Commun., 2000, pp. 41–43.

[12] V. Stanford, Pervasive computing and smart work spaces: integration,
interoperability and interfaces, in: Pervasive Computing 2000, New
IT Industry Conference, January 25–26, NIST, USA, 2000.

[13] O. Galibert, C.Martin, M. Michel, F. Mougin, V. Stanford, The NIST
smart space data flow modular test bed – an environment for interop-
erability, in: IABMeeting, Rutgers CAIPCenter, September 13, 2000.

[14] The CHIL project. <http://chil.server.de>.
[15] S.R. Ponnekanti, B. Johanson, E. Kiciman, A. Fox, portability,

extensibility and robustness in iROS, in: Proceedings of IEEE
International Conference on Pervasive Computing and Communica-
tions (Percom 2003), Dallas-Fort Worth, TX, March 2003, pp. 11–19.

http://chil.server.de


T
E
D
P
R
O
O
F

1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081

Ippokratis Pandis is a Ph.D. candidate at Carnegie

Mellon University (CMU). Before joining CMU,

Ippokratis was member of the Autonomic and Grid

Computing research group of Athens Information

Technology (AIT), where he worked for the CHIL-

FP6-506909 project. Ippokratis has been interested

and holds publications to several conferences in the

areas of database systems, middleware for ubiqui-

tous computing and hypertext/hypermedia systems.

Ippokratis got his B.Sc. from the Computer Engi-

neering and Informatics Department (CEID) of the

University of Patras, Greece, and his M.Sc. from the Information

Networking Institute (INI) of the Carnegie Mellon University.

Konstantinos Stamatis, obtained his Master of

Engineering degree in 2002 from the National

Technical University of Athens and his Master of

Science degree in Athens Information Techology,

after the completion of MSIN program of Carne-

gie Mellon University. Mr. Stamatis has knowl-

edge of C, C++ and Java programming

languages, experience in implementing software

applications, as well as in Unified Modeling

Language and Soft Systems Methodology. His

current research interests lie in the fields of

hardware design and ubiquitous/pervasive computing systems. He is

currently involved in the CHIL-FP6-506909 project.

Lazaros C. Polymenakos, obtained his electrical

engineering and computer science degree from the

National Technical University of Athens Greece

(1989), and his Masters (1991) and Doctoral

degrees (1995) from the Massachusetts Institute

of Technology, Cambridge, MA, USA. Since

1995 he has worked with the IBM Human

Language Technologies group on robust methods

for automatic speech recognition in the presence

of external noise and in varying channels. He has

worked on methods for improving accuracy in

J. Soldatos et al. / Computer Communications xxx (2006) xxx–xxx 15

COMCOM 2957 No. of Pages 15, Model 5+

12 January 2006 Disk Used Nathan (CE) / PadmaPriya (TE)
ARTICLE IN PRESS
R
E
C

[16] S. Shafer, J. Krumm, B. Brumitt, B. Meyers, M. Czerwinski, D.
Robbing, The new easy living project at microsoft research, in:
DARPA/NIST Workshop on Smart Spaces, July 1998, pp. 127–130.

[17] N. Minar, M. Gray, O. Roup, R. Krikorian, P. Maes, Hive:
distributed agents for networking things, in: IEEE Concurrency
8(2), April–June 2000, pp. 24–33.

[18] T. Hammond, K. Gajos, R. Davis, H. Shrobe, An agent-based system
for capturing and indexing software design meetings, in: Proceedings
of the International Workshop On Agents in Design – WAID’02.
Cambridge, MA, August 2002.

[19] H.-C. Wong, K. Sycara. A taxonomy of middle-agents for the
Internet, in: Proceedings of the Fourth International Conference on
Multi-Agent Systems (ICMAS’2000), July, 2000, pp. 465–466.

[20] Java Agent Development Environment. <http://jade.tilab.com/>.
[21] FIPA – The Foundation for Intelligent Physical Agents. <http://

www.fipa.org>.
[22] J. Soldatos, L. Polymenakos, A. Pnevmatikakis, F. Talantzis, K.

Stamatis, M. Carras, Perceptual interfaces and distributed agents
supporting ubiquitous computing services, in: Proceedings of the
Eurescom Summit 2005, April 2005, pp. 43–50.

[23] A. Paar, J. Reuter, J. Schaeffer, J. Soldatos, I. Pandis, M. Carras, A
Pluggable Architectural model and a programming language inde-
pendent API for an ontological knowledge base server, in: The 4th
International Conference on Ontologies, DataBases, and Applica-
tions of Semantics (ODBASE), Agia Napa, Cyprus, October 31–
November 4, 2005.

[24] J.L. Crowley, Context driven observation of human activity, in:
Proceedings of the European Symposium on Ambient Intelligence,
October 2003.

[25] A.K. Dey, M. Futakawa, D. Salber, G.D. Abowd, The Conference
Assistant: Combining context-awareness with wearable computing,
in: Proceedings of the 3rd IEEE International Symposium on
Wearable Computers (ISWC’99), San Francisco, CA, IEEE, October
20–21, 1999, pp. 21–28.

[26] M. Brandstein, D. Ward, Microphone Arrays: Techniques and
Applications, Springer-Verlag, New York, 2001.

[27] F. Talantzis, A.G. Constantinides, L. Polymenakos, Estimation of
direction of arrival using information theory, in: IEEE Signal
Processing Letters, August 2005, to appear.

[28] A. Pnevmatikakis, L. Polymenakos, Comparison of eigenface-based
feature vectors under different impairments, in: Proceedings of the
17th International Conference on Pattern Recognition (ICPR 2004)
(1), pp. 296–299.
U
N
C
O
R

John K. Soldatos, was born in Athens, Greece in

1973. He obtained his Dipl-Eng. degree in 1996 and

his PhD in 2000, both from the Electrical and

Computer Engineering Department of the National

Technical University of Athens (NTUA). He has

had an active role in several EU co-funded research

projects (EXPERT AC-094, WATT AC-235,

IMPACT AC-324, Chameleon EP 20597,

CATCH-2004 IST-1999-11103, and LION IST-

19990-11387), and is now involved in the CHIL-

FP6-506909 project. He has also consulted in many

ICT projects for leading Greek enterprises

(INTRACOM S.A, PEGASUS S.A, IBM Hellas S.A, OTE S.A, TEM-

AGON S.A). Dr. Soldatos has extensively lectured in NTUA and AIT,

while he has also given numerous invited lectures. As a result of his

activities he has co-authored more than 60 papers published in interna-

tional journals and conference proceedings. Since March 2003 he is with

Athens Information Technology, where he is currently an Assistant

Professor. His current research interests are in Pervasive/Ubiquitous and

Autonomic Computing, Grid Computing and Broadband Traffic Control.

speech recognition in embedded devices, and is the author of several

technical publications, presentations and patents. In 1996 he was visiting

professor at Rutgers University, NJ, USA. In 1998, he joined IBM Hellas,

SA where he has focused on research and development for the Greek

speech recognition system. Since 2002, he has been a faculty member of

AIT, where he focuses on research in signal processing, perceptual

interfaces and distributed systems.

James L. Crowley, directs the GRAVIR laboratory

(CNRS UMR 5527) at the INRIA Rhone-Alpes

research center in Montbonnot (near Grenoble),

France. He holds the post of Professor at the

Institut National Polytechnique de Grenoble

(INPG), where he teaches courses in Computer

Vision, Signal Processing, Pattern Recognition and

Artificial Intelligence at l’ENSIMAG (Ecole

National Superieure d’Informatique et de Mathe-

matiques Appliquèes). Professor Crowley has edit-

ed two books, five special issues of journals, and

authored over 180 articles on computer vision and mobile robotics. He

ranks number 1466 in the CiteSeers most cited authors in Computer

Science (July 2004).

http://jade.tilab.com/
http://www.fipa.org
http://www.fipa.org

	Agent based middleware infrastructure for autonomous context-aware ubiquitous computing services
	Introduction
	Taxonomy of middleware components for pervasive computing
	Transparent ad hoc communication
	Capture and transfer of sensor streams
	Raw signals processing
	Context acquisition - situation recognition
	Decision making - context triggered service logic

	Middleware infrastructure for ubiquitous computing
	Related work
	Agent platforms
	Middleware system overview
	Context modeling
	Agent based service oriented infrastructure - sensor and actuator control
	Autonomic features

	Ubiquitous computing application implementation
	Overview of the Memory Jog service
	Distributed multi-agent implementation of the Memory Jog
	Autonomic features
	Users evaluation

	Conclusions
	Acknowledgements
	References


