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Abstract

Middleware for ubiquitous and context-aware computing entails several challenges, including the need to balance between transpar-
ency and context-awareness and the requirement for a certain degree of autonomy. In this paper we outline most of these challenges, and
highlight techniques for successfully confronting them. Accordingly, we present the design and implementation of a middleware infra-
structure for ubiquitous computing services, which facilitates development of ubiquitous services, allowing the service developer to focus
on the service logic rather than the middleware implementation. In particular, this infrastructure provides mechanisms for controlling
sensors and actuators, dynamically registering and invoking resources and infrastructure elements, as well as modeling of composite con-
textual information. A core characteristic of this infrastructure is that it can exploit numerous perceptual components for context acqui-
sition. The introduced middleware architecture has been implemented as a distributed multi-agent system. The various agents have been
augmented with fault tolerance capabilities. This middleware infrastructure has been exploited in implementing a non-obtrusive ubiqui-
tous computing service. The latter service resembles an intelligent non-intrusive human assistant for conferences, meetings and presen-
tations and is illustrated as a manifestation of the benefits of the introduced infrastructure.
� 2006 Published by Elsevier B.V.
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Middleware deals with the coordination, cooperation
and interoperability of distributed components through
bridging the gap between applications and their underlying
low-level software and hardware infrastructure. Moreover,
it facilitates integration of components in distributed heter-
ogeneous environments. Middleware systems and architec-
tures are becoming increasingly important as networks,
services and applications become more complex. These
architectures provide a basis for tackling stringent require-
ments regarding faster development and cost-effective oper-
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ation. The latter requirements expand the scope of
middleware to address not only faster development,
deployment and integration, but also cost-effective systems
operation and management. To this end, emphasis is put
on designing, developing and deploying active systems,
which feature autonomic existence and are commonly clas-
sified as autonomic. Autonomic computing systems possess
several characteristics including that they are self-defining,
self-configuring, self-optimizing, self-healing, context-
aware and anticipatory. Middleware services and architec-
tures are gradually evolving to support autonomic comput-
ing systems [1].

Several research issues come into foreground, when it
comes to supporting the visionary, yet constantly evolving
ubiquitous computing paradigm [2]. Ubiquitous computing
services aim at exploiting the full range of sensors and net-
works available to transparently providing services, regard-
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less of time and end user’s location [3,4]. A core character-
istic of pervasive and ubiquitous computing systems is that
they are context-aware, in the sense that they are able to
provide services not only based on information that end
users provide, but also based on implicit contextual infor-
mation [5]. Implicit information is usually derived based
on a rich collection of casually accessible, often invisible
sensors that are connected to a network structure. Apart
from context-awareness, ubiquitous computing systems
feature increased dynamism and heterogeneity, which dif-
ferentiate them radically from traditional distributed sys-
tems. The underlying ubiquitous computing
infrastructures are more sophisticated and bring into fore-
ground issues such as user mobility, disconnection, dynam-
ic introduction and removal of devices, diverse network
connections, as well as the need to blend the physical envi-
ronment with the computing infrastructure [6]. Ubiquitous
computing components are related to autonomic comput-
ing, since autonomy is a key to confronting these challeng-
es. All major pervasive and ubiquitous computing projects
(e.g. [7–11]) have built sophisticated middleware infrastruc-
tures. These projects reveal that middleware for ubiquitous
computing is much more complex comparing to conven-
tional distributed systems. However, they are focused on
a specific set of middleware services facilitating their target
applications. For example, some emphasize on context-
awareness, others on transparent communications and
mobility, while some others concentrate on autonomy. In
this paper we describe a middleware infrastructure address-
ing a wide range of issues entailed in ubiquitous computing
services. Specifically, this infrastructure provides mecha-
nisms for service access, context modeling, control of sen-
sors and actuators, directory services for infrastructure
elements and services, as well as fault tolerance. We
describe this infrastructure with particular emphasis on a
framework for controlling sensors and actuators, as well
as our approach for modeling situation states. Also, we
describe the implementation of this framework over an
agent platform. Overall this middleware infrastructure
allows ubiquitous service developers to focus on the service
logic of the implementation, rather than implementing the
middleware. The various frameworks provide functionality
that can be reused across different ubiquitous computing
services.

Based on the introduced middleware platform, we have
built a prototype ubiquitous computing service, namely the
Memory Jog (MJ), which resembles a smart non-intrusive
assistant for meetings and conferences. This service is built
in the scope of a smart room, which comprises a rich sens-
ing infrastructure comprising multiple sensors. A number
of perceptual components such as for face detection and
recognition, acoustic localization, person tracking and
speech activity detection were implemented over this sens-
ing infrastructure. These perceptual components were
accordingly used to support context-awareness based on
the introduced context modeling approach. In particular,
perceptual components outputs were combined with a view
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to identifying composite contextual states. Note that per-
ceptual components were wrapped as agents and accord-
ingly integrated to the rest agent based middleware
framework.

The service logic of the Memory Jog made use of the
introduced sensor and actuator control framework with a
view to dynamically discovering hardware and software
elements, and invoking their services. This framework facil-
itated the implementation of the Memory Jog service logic
given that important middleware services were reused.
Indeed, by reusing middleware services the Memory Jog
service developers allocated effort on implementing the ser-
vice logic, paying special attention in usability aspects, such
as the intuitiveness of the user interface and the non-obtru-
sive nature of the service. These aspects were positively
evaluated in the scope of simulation studies with end users.
Main conclusion and results from these studies are also
included in this paper.

The rest of the paper is structured as follows: Section 2
provides a taxonomy of middleware components for ubiq-
uitous computing. Section 3, introduces our overall middle-
ware architecture for ubiquitous computing services and
positions it with respect to other prominent middleware
frameworks for ubiquitous computing. Special emphasis
is paid into describing our approach for context modeling,
as well as a framework for dynamically controlling sensors,
actuators and services. It is also illustrated that this middle-
ware infrastructure was implemented as a distributed multi
agent system. Section 4 describes presents the implementa-
tion of the Memory Jog service based on the introduced
infrastructure. It also reports main results from simulation
studies involving users. Finally, Section 5 summarizes the
paper and outlines the main conclusions.

2. Taxonomy of middleware components for pervasive

computing

Middleware architectures for traditional computing ser-
vices aim at providing complete transparency of the under-
lying technology and their surrounding environment.
While this provides several benefits it is not the ultimate
goal in ubiquitous computing environments. These envi-
ronments target context-awareness, which demands avail-
ability of knowledge and information about the
surrounding environment. At the same time there is also
a need for an appropriate degree of transparency, since this
can reduce software complexity and optimize the use of
system resources. As a result, ubiquitous computing mid-
dleware strives to achieve an optimal balance between
awareness and transparency [2].

Other objectives of middleware architectures and com-
ponents are to ease application developers in exploiting
their capabilities. Efficient middleware architectures facili-
tate structured integration of components based on well-
defined development processes and programming environ-
ments. Note however, that the efficiency of middleware
components is audited based on the quality of their run-
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time services. As a result, middleware enables the coopera-
tion between development support and runtime services.
This cooperation is particularly difficult in the scope of per-
vasive computing, given that middleware components
expose multiple interfaces to different application level
components, while also providing a multi-facet runtime
support. In particular, components supporting ubiquitous
computing can be classified according to their functional-
ity, as illustrated in the following paragraphs.

2.1. Transparent ad hoc communication

Middleware components in ubiquitous computing pro-
vide transparent communication between the diverse sen-
sors and devises engaged in the computing infrastructure
(e.g., cameras, microphone, computers, PDAs, smart
phones). Middleware components abstract the details of
communication channels and protocols and achieve inter-
operability regardless of the underlying network infrastruc-
ture. As devices are added and/or removed from the
network, systems and applications are notified. Publish-
subscribe mechanisms and popular XML messaging proto-
cols can be employed to this end.

2.2. Capture and transfer of sensor streams

Capturing sensor data is a prerequisite to obtaining
information about the surrounding environment. To this
end, low level middleware components interface with the
various sensors in order to obtain raw sensor data. Such
components include a rich set of capture drivers for differ-
ent sensors.

In the scope of ubiquitous computing applications, raw
sensor data is processed towards extracting context cues. In
most cases this processing is performed at different com-
puting platforms that the host capturing data (Fig. 1). This
is mainly due to the need to exploit distributed computa-
tional power given that sensor processing might be compu-
tationally demanding. Therefore, there is a need for
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additional components undertaking the graceful transfer
of sensor streams across the network for distributed pro-
cessing. Representative components falling in this category
are high performance sockets ensuring quality of service in
the delivery of sensor data. A prominent example of such a
middleware infrastructure is the NIST Smart Flow System
[12,13].

2.3. Raw signals processing

Raw sensor data is processed and contextual informa-
tion relating to location, identity and activity is obtained.
Such information constitutes a form of elementary context,
but it is important since it can serve as an anchor to deriv-
ing additional information [3]. Collecting elementary con-
text hinges on middleware components performing
computationally complex signal processing on the sensor
data (e.g., audio, visual streams). Such middleware compo-
nents include a wide range of perceptual technologies (e.g.,
person and object identification, people and object track-
ing, multimodal interactions, speech recognition, body
tracking).

2.4. Context acquisition – situation recognition

Context-awareness in ubiquitous computing is not limit-
ed to identifying people, objects and their locations. On the
contrary, the emphasis is on identifying situations com-
posed of multiple forms of elementary context. As a result,
middleware components for modelling and dynamically
detecting situations are important to any non-trivial ubiq-
uitous computing service. Conventional programming lan-
guages provide limited or no support for context-
awareness. Furthermore, technologies providing support
for context-awareness are likely to present differences
across different programming languages. This creates por-
tability problems for context-sensitive applications, which
middleware architectures attempt to solve. Thus, middle-
ware must provide a uniform and common way to express
Microphone
Array

Audio
Capture

Video
Capture

Camera

ted processing of sensor streams.
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the software’s context-awareness with minimal dependen-
cies on specific languages, operating systems, sensors or
environment.

2.5. Decision making – context triggered service logic

Context acquisition and situation recognition constitute
prerequisite steps in implementing the service logic. Service
logic in traditional applications is triggered on-demand
paradigm, i.e., upon users’ requests. This paradigm is
essentially augmented in the scope of ubiquitous comput-
ing applications, since the service logic can also be triggered
automatically, based on the current context. Automatic
triggering may involve adapting to the new environment,
notifying the user, as well as communicating with other
computers or devices to exchange information. Context-
triggered service logic is a foundation for non-intrusive
services.

3. Middleware infrastructure for ubiquitous computing

3.1. Related work

This section presents key elements of a middleware
infrastructure devised and developed in the Computers in
the Human Interaction Loop (CHIL) project [14], with a
view to easing service development and application integra-
tion. CHIL emphasizes on the development of ubiquitous,
context-aware services in in-door environments, which are
equipped with numerous sensors (i.e., microphones and
cameras). These environments are conveniently called
‘smart rooms’. Fig. 2 depicts the floor plan of one of the
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four smart rooms that have been setup in the CHIL pro-
ject, namely the Athens Information Technology smart
room. Services developed in these smart rooms comprise
a large number of perceptual middleware components
(such as recognition and localization algorithms), which
provide contextual information on people and objects’
identity and location. Specifically, CHIL service developers
exploit a wide range of perceptive interface components
including a rich collection of 2D-visual components (i.e.,
person localization and tracking, body detection, head ori-
entation, face detection and recognition), 3D-visual percep-
tual components (i.e., person tracking, gesture/posture
recognition, head & hand tracking using stereo cameras,
pointing gesture recognition using stereo cameras), acous-
tic components (i.e., speech recognition (including far-
field), source localization, speech detection, speaker identi-
fication, acoustic emotion recognition, acoustic event clas-
sification, beamforming), as well as audio-visual
components (i.e., A/V person tracking, person identity
tracking, activity recognition, AVSR – mouth (lips) obser-
vation, emotion recognition). The middleware infrastruc-
ture presented in this section facilitates integration of
these components, as well as the fusion of their contextual
information with a view to deriving more sophisticated
context. The diversity of these technology components,
the potential sophistication and integration complexity of
the services, as well as the number of collaborating organi-
zations and demonstration sites, pose unique integration
challenges.

All non-trivial ubiquitous and pervasive computing pro-
jects have devised similar middleware infrastructures. The
Interactive Workspaces project at Stanford University [7]
focused on human interaction with devices and large
high-resolution displays. A key challenge in this project is
the coordination of multi-modal, multiuser and multi-de-
vice applications in different contexts. To this end the pro-
ject has developed the Interactive Room Operating System
(iROS) [15], which provides a reusable, robust and extensi-
ble software infrastructure enabling the deployment of
component based ubiquitous computing environments.
IROS supports various modalities and human-computer
interfaces, by tying together devices each one having its
own operating system.

The Oxygen project at MIT concentrates on a pool of
user and system technologies enabling pervasive human-
centered computing. In Oxygen applications special
emphasis is paid on automated, personalized access to
information, adapting the applications to users’ preferences
and needs. In terms of middleware architecture, the Oxy-
gen project has produced the MetaGlue system [10], which
constitutes a highly robust agent platform, where agents
represent both local resources and interactions with those
resources. Metaglue relies on a custom distributed commu-
nication infrastructure enabling agents to run autonomous-
ly from individual applications so they are always available
to service multiple applications. Metaglue is efficient in
implementing autonomous agents that significantly aug-
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ment the functionality of the space and facilitate user inter-
action. However, it provides no essential support for imple-
menting context-awareness. The latter is addressed in the
GOALS architecture [9], which is the evolution of the
MetaGlue system.

The EasyLiving system developed at Microsoft research
is another prototype ubiquitous computing architecture
[16]. Easy Living focuses both on the coordination of the
devices, but also on exploitation of contextual information.
Specifically, the system employs computer vision technolo-
gies for person-tracking and visual user interaction and
supports context-awareness based on a geometric model
of the world. It uses device-independent communication
and accordingly adapts the user interface.

The Aura system [8] targets pervasive computing envi-
ronments involving wireless communication, wearable or
handheld computers, and smart spaces. Aura provides soft-
ware architectural models that monitor an application and
guide dynamic changes to it. Thus, it provides opportuni-
ties for adapting to varying resources, user mobility, chang-
ing user needs and system faults.

The fact that each of the above projects has built its own
infrastructure manifests that there is no global unified
framework addressing all needs. Architectures tend to con-
centrate on particular application aspects. Some focus on
the co-ordination of physical space and devices (e.g., inter-
active workspaces), others on synchronizing multiple
modalities (e.g., Oxygen), and others on user mobility
and attention (e.g., AURA). Nevertheless, there is no
architecture providing the necessary level of sophistication
for supporting integration of a large number of autonomic
perceptual components, which is a major research chal-
lenge in CHIL.

3.2. Agent platforms

In order to alleviate the complexity of building middle-
ware for ubiquitous computing, we have strived as much as
U
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possible to exploit pre-existing platforms and components.
In particular, we have taken advantage of middleware
developments supporting high performance transfer and
processing of streams, context-awareness and situation
detection, transparent ad hoc communication, as well as
autonomic features. These components have, however,
been appropriately customized towards implementing a
dynamic self-resilient infrastructure for provision of servic-
es, along with a powerful mechanism for sophisticated con-
text modeling.

At the heart of our middleware infrastructure implemen-
tation is a distributed agent infrastructure. Agent infra-
structures facilitate the implementation of communication
between distributed entities based on rich semantics (see,
for example [17,18]). Moreover, they ease the implementa-
tion of transparent ad hoc communication between distrib-
uted components. Furthermore, agents provide a certain
degree of autonomy (e.g. [19]), which constitutes a sound
basis for implementing autonomic features.

Software agents lack the capabilities required to sup-
port high performance transfer of sensor streams. Infra-
structures for distributed transfer of sensor streams are
usually built as system level components that do no fea-
ture the high level capabilities of software agents. There
is therefore a need for integrating low level stream trans-
fer middleware with agent capabilities. A prominent way
to achieve this is to wrap low level middleware compo-
nents with agent based middleware, so that they behave
as software agents. The concept is depicted in Fig. 3,
which shows that low level components become part of
the agent infrastructure, as soon as an agent wrapper is
implemented on top of them. As all middleware compo-
nents expose agent behavior, they can be managed based
on a single higher layer interface. Note that in Fig. 3,
middleware components can be distinguished into two
basic sets according to their socket communication capa-
bilities. Higher performance sockets are required for the
distributed transfer of sensor streams, while agents com-
Management Layer

Context Awareness Layer

Agent

Signal
Processing

Agent
Wrapper
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municate through conventional socket interfaces. This is
illustrated in the figure in the form of two logically dis-
tinct network infrastructures, which, however, correspond
to the same physical network connectivity.

3.3. Middleware system overview

Fig. 4 depicts an anatomy of a multi-agent framework
supporting the implementation of ubiquitous and perva-
sive computing services. Specifically, this framework pro-
vides a set of functionalities that along with the sensing
infrastructure can be re-used across different ubiquitous
computing services. These functionalities include mecha-
nisms to:

• Control the sensors and actuators of the ‘smart room’.
• Control user access to services.
• Modeling composite contextual states based on combi-
nations of perceptual components.

Several ubiquitous computing services can leverage this
reusable functionality, which allows the service developer
to concentrate on implementing the service logic rather
than the middleware. Apart from this set of reusable com-
ponents and services, the framework implements ‘plugga-
ble’ mechanisms for incorporating additional perceptual
components and sensors.

The framework consists of the following agents types:

• Core Agents: Core agents are independent of the service
and smart room installation independent. They provide
the communication mechanism for the distributed enti-
ties of the system. Moreover, core agents undertake
U
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Fig. 4. Middleware infrastructure
the control of the sensing infrastructure, while also
allowing service providers to ‘plug’ service logic into
the framework. Core agents include the:
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� Device Desktop Agent, which implements the user
interface required for accessing the ubiquitous ser-
vices. A ‘pluggable’ mechanism allows the user inter-
face to be customized to the particular ubiquitous
computing service.
� Device Agent, which enables different devices to
communicate with the framework.
� Personal Agent, which constitutes the proxy of the
end user in the agent world. The personal agent con-
veys user requests to the agent manager, which are
accordingly handled by appropriate agents. It main-
tains the user’s profile in order to personalize the ser-
vices to the end user.
� Agent Manager, which allows the system to be
dynamically augmented with additional Service
Agents. Thus, the Agent Manager allows additional
basic, as well as ubiquitous computing services to be
incorporated to the system.
E
D
P• Basic Services Agents: These agents incorporate the

service logic of basic services, which are tightly cou-
pled with the installed infrastructure of each smart
room. Basic services include the ability to track co-
mposite situations, as well as the control of sensors
and actuators. Tracking of composite situations is
performed through the Situation Watching Agent (-
SWA) (Fig. 4) based on the context modeling appr-
oach discuss in following paragraphs. Also, control
of sensors and actuators is performed through the
Smart Room Agent in a way that is also elaborated
in subsequent paragraphs. Furthermore, a Knowledge
CHIL Agent Manager /
CHIL Service Agent Interface

CHIL Services

CA SSWA ACA

MJ C SSW AC

CHIL Knowledge
Base

Sensors /
Actuators

ituation Modeling
Perceptual
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Base Agent, allows the agents of the framework to
dynamically access information on the state of the
components of ubiquitous computing environment (-
e.g., sensors, actuators, perceptual components), thr-
ough a Knowledge Base Server that is supported as
an ontology management system.

• Ubiquitous Service Agents: Ubiquitous service agents
implement the non-obtrusive service logic of the vari-
ous context-aware services. Each ubiquitous computing
service is therefore implemented as a Ubiquitous ser-
vice agent and accordingly plugged into the framework.
In the scope of the CHIL project, several ubiquitous
agents corresponding to various ubiquitous computing
services are implemented and integrated into the fra-
mework. A following section elaborates on the MJ se-
rvice, which is implemented through the Memory Jog
Agent (MJA). Fig. 4, depicts also the Connector Agent
(CA), the Socially Supportive Workspaces Agent (SS-
WA), and the Attention Cockpit Agent (ACA), which
correspond to other CHIL services.

This agent framework has been implemented based on
the Java Agent Development Environment (JADE) plat-
form [20]. In this implementation, agent communication
is realized based on Foundation for Intelligent Physical
Agents (FIPA) primitives [21]. Several aspects of this agent
based middleware framework are described in [22]. More-
over, information about the Knowledge Base and its use
as a directory service for middleware components and ser-
vices is provided in [23]. Following paragraphs describe the
approaches adopted for context modelling and sensor/ac-
tuator control, while also illustrating how agents have been
augmented with autonomic capabilities.

3.4. Context modeling

Context modeling middleware facilitates ubiquitous
computing services with the ability to describe the state
of their surrounding environment, while also providing
mechanisms for accessing this description.

Accordingly, context modeling languages exploit this
middleware to encode the detection of events that are nec-
essary to initiate or terminate service actions. There are
several approaches to modeling situations, which according
serve as basis for implementing context-aware components.

The approach adopted and used along with the agent
middleware infrastructure of the previous paragraph is
based on the notion of networks of situation states [24].
According to this approach a situation is considered as a
state description of the environment expressed in terms of
entities and their properties. A situation is a kind of state
description composed of a conjunction of predicates. Pred-
icates are truth functions that can take on logical or prob-
abilistic values. Situations are defined in terms of an
assignment of observed entities to ‘roles’, the properties
of the entities assigned to roles, and the relations (i.e., rel-
ative properties) of the entities playing roles.
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Entities have numerical attributes such as position, ori-
entation, size, configuration or external appearance. These
are tracked by perceptual components and can be used to
compute relations. A relation is a predicate (truth) function
computed over the attributes of one or more entities. Rela-
tions may be represented by boolean or probabilistic truth-
values. Each situation is defined in terms of a set of roles
and relations. The concept of role is an important tool
for simplifying the network of situations. It is common to
discover a collection of situations for an output state that
have the same configuration of relations, but where the
identity of one or more entities is varied. A role serves as
a ‘variable’ for the entities to which the relations are
applied, thus allowing an equivalent set of situations to
have the same representation. A role is played by an entity
that can pass an acceptance test for the role, in which case,
it is said that the entity can play or adopt the role for that
situation.

A situation model describes activity using a network of
situations. Such a model specifies the entities, properties
and relations that must be observed towards triggering
the service logic. Changes in individual or relative proper-
ties of specified entities correspond to events that signal a
change in situation. For example, in the scope of a meet-
ing involving short presentations, at any instant, one per-
son plays the ‘role’ of the ‘presenter’, while the other
persons play the role of ‘attendees’. Dynamically assign-
ing a person to the role of ‘presenter’ makes it possible
to select perceptual component to acquire images and
sound of the current speaker. Detecting a change in some
role allows the system to reconfigure the video and audio
acquisition systems.

Situation models determine the entities to observe, the
properties to measure and the events to detect, and thus
specify the selection and configuration of perceptual com-
ponents (i.e., components realizing lower level signal pro-
cessing). Accordingly, perceptual component outputs can
be combined to identify situation states of the situation
model, as shown in Fig. 5.

An example of a situation model targeting context-
awareness for meeting activities involving an agenda and
presentation is depicted in Fig. 6. This model signifies the
importance of the following events with respect to a
meeting:
• Commencement of the meeting.
• Start of the presentation on a particular agenda item
(i.e., session of the meeting).

• Questions on each of the presentations.
• End of the presentation.
• End of the meeting.

Moreover, this model defines possible sequences of
occurrence for these events, based on the arcs connecting
the various situations. The context-aware middleware
encoding this situation model makes provisions for both
recognizing situation and situation transitions, but also
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situations.

Describing context as a network of situations may seem
limiting and not scalable, mainly because it is unlikely to
capture rich context based on a small set of situation states.
Nevertheless, a situation model can be dynamically extend-
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ed as new types of relations between entities are identified.
Furthermore, there is always a possibility for making use of
more than situation models in the scope of an application.
Extending the situation model dynamically, while also
dynamically switching between more than one model pro-
vides significantly more expressing power.

The network of situations approach has been imple-
mented in the Situation Watching Agent of our framework.
In particular, the Situation Watching Agent parses situa-
tion models that are expressed in XML format. Each situ-
ation model reveals the perceptual components and their
configuration required to identify each state of the model.
Once a situation model is loaded to the Situation Watching
Agent (based on an appropriate XML file), the Situation
Watching Agent parses the model and identifies the percep-
tual components required to track the states of the model.
Accordingly, the SWA conveys requests for subscribing to
these perceptual components to the Perceptual Compo-
nents Wrapper Agent (PCWA). The PCWA queries the
directory services (i.e., the knowledge base) to dynamically
discover the properties and configuration of perceptual
components, and then subscribes to them. The required
perceptual components provide input to the PCWA, which
acts also as a manager of these subscriptions. As the per-
ceptual components send their output to the PCWA, the
latter filters these outputs according to the properties of
the subscription and forwards them to the SWA. The
whole process is illustrated in Fig. 7. Thus, the Situation
tuation model.
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Watching Agent acts as a context broker, which is a quite
common approach in context-aware architectures for
smart spaces.

3.5. Agent based service oriented infrastructure – sensor and
actuator control

The introduced middleware infrastructure provides a
common interface (API) for accessing and controlling the
various hardware elements (i.e., sensors and actuators).
To this end, sensor and actuators register with the directory
service provided by the Knowledge Base Service. Sensor
and actuator meta-data, which are registered within the
knowledge base server, include information about the ven-
dor, the model, the status, interfaces, capabilities, as well as
the network addresses of the device. From an implementa-
tion perspective, we have concentrated on registering the
two main types of sensors that exist in our smart room
(Fig. 2), namely microphones and cameras. Thus, we have
implemented three distinct proxy agents for these devices:
one generic, one for microphones and one for cameras.
The main responsibilities of these proxies are to:
• Represent sensors and actuators in the world of agents
and provide access to the rest of the framework.

• Interact with the directory service of the knowledge
base.

For each new device (i.e., sensor or actuator) that is
installed in the room, a new proxy agent is instantiated
as a mean to controlling the device. This proxy agent con-
stitutes an agent wrapping to the device control capabili-
ties. Upon the initialization of the device, the proxy agent
is responsible for registering it with the knowledge base.
Accordingly, it updates the indicated operational state
of the device in the registry (for example, when the device
shuts down or restarts). Finally, it translates requests
from other agents of the framework, to device-specific
calls.
E
D
P
RSimilarly to the infrastructure elements the framework

controls various infrastructure specific (auxiliary) services.
Developers of ubiquitous computing applications use the
framework to dynamically access information on the
available value-adding services installed in the infrastruc-
ture. Prominent examples of such services include a
text-to-speech (TTS) service, a display, and a targeted
audio service. Information about these services is regis-
tered using a proxy agent, similar to the case of sensor
and infrastructure elements registration. The mechanism
is illustrated in Fig. 8. A wrapper agent represents the ser-
vices available to the agent platform, enables communica-
tion with the rest of the framework, translates requests
from the various clients to service-specific calls and inter-
acts with the knowledge base. This wrapper agent pro-
vides another level of abstraction. Specifically, all
services that provide the same functionality (e.g., all
TTS services) are wrapped by a service proxy of the same
type (e.g., a TTS proxy). This service specific proxy han-
dles all requests for that service, being also responsible to
forward them to specific implementations and machines
that host this service. The service proxy retrieves also
dynamically information (from the knowledge base) about
the existence, the properties and the operational status of
the available services. In the case where there is no avail-
able provider of this service and the proxy declares inca-
pable of fulfilling the request.

Note that the particular algorithm for selecting a service
implementation depends on the targets and goals of the
overall ubiquitous computing service. For example, a
TTS service instance, as well as a display service instance
may be selecting by the corresponding proxies based on a
variety of criteria involving people locations an orientation
within the smart room.

Fig. 8 illustrates the implemented registration mecha-
nism enabling discovery and manipulation of services and
infrastructure elements. The mechanism involves the fol-
lowing steps:
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• The proxy of a specific service registers into the system
(step A).

• All the providers of this specific service also register t-
hemselves into the system (step B).

• When clients want request a particular service invoca-
tion, they send a request to the gateway for all the se-
rvices (step 1), which is a dedicated agent and is called
the Smart Room Agent (SRA).

• The SRA searches the registry in order to see if there is
a proxy for such a service (step 2).

• Assuming that a proxy is found it forwards the request
to it (step 3).

• When the service proxy receives a new request, it che-
cks the registry to find available service providers (st-
ep 4).

• A selection algorithm is used to decide to which service
provider to forward the request. Following the selec-
tion the request finally is received and served by a ser-
vice provider (step 5).

Note that the all information is dynamically looked up
at the knowledge base. This is performed to support for
service providers dynamically coming into and going out
of the system.

3.6. Autonomic features

Agent platforms support certain autonomic features of
a distributed system, including the abilities to persist,
clone and move (migrate) components to other hosts.
However, there is also a need to implement application
specific functionality for discovering agent deficiencies,
since the later are differently defined in the scope of an
application.

Based on the JADE platform we augmented all agents
of the framework with the capability of querying agent
E
D
Pcomponents about their status. Thus, we implemented a

‘ping’-like functionality for all agents of the framework.
Moreover, as agents discover the status of other agent
entities, we have implemented functionality enabling
agents to adapt their behavior to the status of other
agents. This is particularly important in the case where
the availability of an agent entity is a prerequisite for
the operation of others. Specifically, in the middleware
framework presented in Fig. 4, several agents depend on
others. For instance, the Situation Watching Agent relies
on underlying wrappers of perceptual components to sup-
port situation recognition. In general, an agent has a set of
dependencies expressed as a dynamic list of other agents.
As a first step to ensuring autonomy and maximum ser-
vice availability of the system, we implemented functional-
ity allowing every agent to keep track of the list of its
dependants and accordingly adapt its functionality. Adap-
tation results in downgrading or upgrading the functional-
ity and features offered by the particular agent, depending
on the availability of other agents.

As a second step to autonomy we provided middleware
for self-healing functionality. This was achieved through
migrating dependant agents to a different execution envi-
ronment (e.g., machine or agent container) upon detection
of problems with their availability. To this end the migra-
tion process is combined with the detection (‘ping’) func-
tionality outlined above. Agent migration is undertaken
from another entity that is able to detect the problem.
The delegation of this entity is implemented based on
either an Autonomic Manager agent entity, which under-
takes the role of migrating and restarting agents. The
autonomic manager exploits the ‘ping’ functionality to
detect failing agents. Fig. 9 depicts the state diagram of
an agent incorporating autonomic functionality. This
agent ‘pings’ dependant agents and accordingly modifies
its state.
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Fig. 9. Pinging dependent agents and agent migration.
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4. Ubiquitous computing application implementation

4.1. Overview of the Memory Jog service

The middleware infrastructure outlined in the previ-
ous section served as a basis for implementing ubiqui-
tous computing services. In the sequel we present the
implementation of an application constituting a non-in-
trusive assistant for events such as lectures, meetings,
presentations occurring in in-door environments. The
primary function of this assistant is to track context
and provide pertinent information facilitating humans
to accomplish tasks during these events. Since provision
of pertinent information serves as a memory aid to
humans, we conveniently call this ubiquitous computing
service ‘Memory Jog’ (MJ). The MJ resembles a con-
text-aware conference assistance [25] and has been
selected for studying computing services based on
implicitly derived information in the scope of the CHIL
project.

4.2. Distributed multi-agent implementation of the Memory

Jog

The MJ service was implemented in the smart room
depicted in Fig. 2, which consists of:
• One 64 channel microphone array [26].
• Microphones for localization, in particular three clus-
ters, each consisting of four microphones.

• Four fixed cameras, used for overall monitoring of the
room.

• One active camera with pan, tilt and zoom (PTZ
camera).

• A panoramic (or fish-eye) surveillance camera.
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The service implementation takes advantage of the mid-
dleware infrastructure depicted in Fig. 4. At the lowest
level of this infrastructure, perceptual components process
sensor streams. To this end, middleware capturing data
from all available sensors has been produced. Captured
data are made available for processing in any of the sys-
tems, based on the distributed NIST Smartflow middle-
ware (NSFS). Hence, the NSFS system constitutes the
solution adopted for high performance transport of
streams.

Perceptual processing of sensor data is based on the fol-
lowing components technologies that have been developed
in our lab:
• Acoustic identification and localization of the speaker
[27].

• Face Detection, Recognition and People tracking
[28,22].

• Detection of speech activity.

Perceptual processing is computationally demanding.
Therefore, perceptual components are implemented in
low-level high performance languages (i.e., C/C++), and
wrapped as JADE agents in line with the notion illustrat-
ed in Fig. 3. Wrapping was implemented through a per-
ceptual components wrapper agent, as shown in Fig. 9.
Accordingly, we combined perceptual components in
order to create higher level perceptual components that
can track situations as illustrated in Fig. 5. Fig. 10 depicts
how elementary components tracking the agenda, identi-
fying speech activity, identifying faces and recognizing
people are used to form composite perceptual components
that keep track of the status of a whiteboard and the
meeting room table, with respect to the meeting partici-
pants. The higher level ‘Table Watcher’ and ‘White-board

Watcher’ perceptual components are accordingly use to
track situations.

The situations to be tracked are driven by the situation
model depicted in Fig. 6. This situation model is loaded in
the Situation Watching Agent based on an XML file
describing the model. This XML format specifies the per-
ceptual components output combinations leading to detect-
ing a particular situation. These combinations are also
described in Table 1, which specifies the perceptual compo-
nents values that determine the transition to each one of
the contextual states of the situation model.

The subscription mechanism illustrated in Fig. 7, was
exploited to detect situations and triggering the service log-
ic. The service logic of the MJ service was based on a wide
range of services offered within the smart room. Smart
room services were implemented based on the introduced
sensor, services and actuator control framework. Specifi-
cally, the following services were implemented based on
this framework: (a) a TTS (Text-to-Speech) service, (b) a
slide show/display service and (c) a storage service allowing
access to a relational database. These services were invoked
by the service logic, either based on current context, or
upon end users’ requests. The latter requests can be issued
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Fig. 10. Perceptual components supporting the situation model.

Table 1
Identifying composite contextual states through combining perceptual components’ outputs

Situation transition Combinations of perceptual components outputs

NILfi S1 TableWatcher = N (N people in table area) and Speech Activity (SAD = true)
S1fi S2 WhiteboardWatcher = 1 (1 person in speaker area), TableWatcher = N � 1 (N � 1 people in table area)
S2fi S3 Acoustic Localization (Table Area)
S3fi S2 Acoustic Localization (Speaker Area)
S2fi S4 WhiteboardWatcher = 0 (no person in speaker area), TableWatcher = N (N people in table area)
S4fi S5 TableWatcher = 0 (no people in table area)
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visualize MJ information, as well as to allow interaction
with the smart room. A snapshot of this interface is provid-
ed in Fig. 11.

4.3. Autonomic features

All these agent types extend the same agent class, which
realizes transparent communication capabilities, subscrip-
tions, poling, as well as agent discovery and communica-
tion. In order to ensure the autonomic functionality of
the overall system, we augmented our basic JADE agent
class with additional failure detection and healing function-
ality as outlined in the previous section.

Autonomic functionality was implemented as an addi-
tional layer over the basic JADE functionality (Fig. 12).
Therefore, all agent types described above we endowed
with healing capabilities since they were based on the
same augmented version of JADE agent. Therefore,
autonomy constitutes a vertical pillar of all distributed
entities.
4.4. Users evaluation

The overall implementation of the MJ service confront-
ed a host of technical challenges as outlined above. Apart
from technical challenges however, ubiquitous services
need to take into account user issues, with a view to ensur-
ing that services are appealing to end users. User accep-
tance is a hot issue for non-obtrusive services, given that
the vast majority of end users are not acquainted with
the emerging context-aware computing paradigm.

In order to evaluate the MJ service prototype in terms of
user acceptance, we performed two simulations studies. In
each case one potential end-user (‘the subject’) was asked
to use the MJ service along with members of the design
team who played as actors in the scenario. The subject of
the study was well briefed on the CHIL project, the partic-
ular scenario and the background to the MJ service. Mem-
bers of the design team configured the scenarios and made
observations relating to the end user’s behavior. Upon
completion of each simulated scenario the user was inter-
viewed to gain feedback about the service usability, the
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Fig. 12. Enhancing software agents with autonomic functionality.
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possible improvements and additions to the service.
Both scenarios occurred in the room depicted in Fig. 2.

The first scenario involved a simple presentation with two
participants. The purpose of this scenario was to provide
a fictional example according to which the initial service
prototype was designed. As such the context is not neces-
sarily one that would occur in the real world. It involves
two developers in the room and one developer who is a vir-
tual participant and is not physically present in the room.
The presentations were about recent work that each of
the participants has done.

The second scenario involved a meeting, where partici-
pants aimed at reporting the progress of their work on a
project. In particular, this involved a regular progress
meeting of four developers and a project manager, in which
each member of the team presents the latest developments
in their work. A member of the administration of the insti-
tution also attends the meeting as new hardware and soft-
ware needs to be purchased and they are responsible for
approving the purchase. The regular meeting is also used
to address high-level project management a system design
issues.

The simulation studies revealed several issues with
respect to the service prototype. As far as the intuitiveness
of the user interface is concerned, the interface was gener-
ally perceived as being user friendly. Also, the information
displayed was easily understood and accessed. However,
users declared that certain features (e.g., the search button)
need to be made more obvious.

With respect to the level of interaction and obtrusiveness
of the MJ service, the current functionality was perceived
not to be overly intrusive in that it did not require a great
deal of user input to respond to and adapt to the progress
of the event. Recommendations were made, however, to
make changes more obvious when they occur. A suggested
way to achieve this was the use of interactive timed pop-up
info boxes.

End users suggested also additional functionalities, such
as the ability to view the presentation slides through the
interface, and to possibly make personal annotations on
the slides. Moreover, users asked for pop-up or audio
reminders about the timing of the event, so that speakers
are reminded of when their time is running out. More triv-
ial recommendations concerned showing a reminder at the
end of the event as to when the next event in a sequence is
scheduled, as well as to who should attend. These sugges-
tions will be seriously taken into account into designing
the next version of the MJ service.
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5. Conclusions

Middleware architectures boost rapid application devel-
opment in the scope of complex and heterogeneous net-
work and computing infrastructures. The increasingly
important role of middleware components is intensified,
when it comes to addressing ubiquitous computing applica-
tions and services. Middleware infrastructures for such
applications impose a need for balancing between transpar-
ency and context-awareness, while at the same time tack-
ling with more sophisticated environments in terms of
hardware and software. Furthermore, a ubiquitous com-
puting application asks for a wide range of runtime services
such as context-awareness, sensor streams capturing, trans-
fer and processing, dynamic service discovery and invoca-
tion, as well as autonomic capabilities.

In supporting these features, a host of middleware com-
ponents have to be implemented and integrated. Agent
platforms provide a sound foundation for implementing
such runtime services in a distributed environment. In this
paper we have introduced an agent based middleware
framework, which can ease the implementation of sophisti-
cated context-aware services in appropriately configured
in-door environments (called ‘smart rooms’). Smart rooms
comprise a rich set of video and acoustic sensors, enabling
several perceptive interfaces to operate and provide ele-
mentary context cues. The introduced agent framework
provides functionality for service access control, personali-
zation, context modeling, as well as of dynamic control and
management of sensors and actuating devices. Context
modeling relies on the network of situations approach,
which allows composite contextual states to be detected
and tracked based on a combination of perceptual compo-
nents outputs. The sensor and actuator control framework,
allows ubiquitous computing services to dynamically access
information on the status of infrastructure elements, as
well as to invoke their services. Moreover, the agent frame-
work has been augmented with fault tolerance capabilities
ensuring that failures are timely detected and restored.

Based on this agent framework, we have implemented
the Memory Jog, an intelligent non-obtrusive service pro-
viding pertinent information and assistance in the scope
of meetings, seminars and presentations. This implementa-
tion has leveraged the capabilities of the agent based frame-
work, therefore allowing the service developer to focus on
the service logic implementation rather than the middle-
ware. In implementing this service we have taken advan-
tage of a wide range of perceptive interfaces including
face detection, face recognition, person tracking (both visu-
al and acoustic), as well as speech activity detection. The
corresponding perceptual components have been used to
trigger a simple situation model, which has been encoded
into the agent framework. Following situation detection,
the Memory Jog leverages the sensor, service and actuator
control framework to invoke TTS services, display services,
as well as storage services allowing the retrieval of past
information relating to the current contextual state.
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