
Simultaneous Query Pipelines in QPipe

Kun Gao
Carnegie Mellon University

kgao@cs.cmu.edu

Stavros Harizopoulos
MIT CSAIL

stavros@csail.mit.edu

Ippokratis Pandis
Carnegie Mellon University

ipandis@cs.cmu.edu
Anastassia Ailamaki

Carnegie Mellon University
natassa@cs.cmu.edu

Vladislav Shkapenyuk
Rutgers University

vshkap@cs.rutgers.edu

1. Introduction
Data warehousing and scientific database applications

operate on massive datasets and are characterized by com-
plex queries accessing large portions of the database. Con-
current queries often exhibit high data and computation
overlap, e.g., they access the same relations on disk, com-
pute similar aggregates, or share intermediate results.
Unfortunately, run-time sharing in modern database
engines is limited by the paradigm of invoking an indepen-
dent set of operator instances per query, potentially missing
sharing opportunities if the buffer pool evicts data early.

QPipe is a new, operator-centric, relational query engine
that can detect and exploit overlap across concurrent que-
ries, at run time [1]. In QPipe, each relational operator is
promoted to an independent micro-engine (µEngine) with
its own resource management and runtime support. Incom-
ing queries break up into as many tasks (or query packets)
as the nodes of the compiled query tree plan, and queue up
in front of each µEngine. Since query packets are self-con-
tained requests, QPipe allows external applications to sub-
mit custom query packets, bypassing the regular parsing
and optimizing phases. Under regular query execution,
µEngines work independently and evaluate each query in
parallel. Data flow for each query between µEngines
occurs through dedicated tuple buffers. µEngines continu-
ously monitor their queue to detect data and work sharing
opportunities across different queries. Once such an oppor-
tunity is detected, only one query packet remains active,
performing the overlapping operation, while the results are
simultaneously pipelined to all consuming queries. More
details about sharing opportunities and the implementation
of simultaneous pipelining can be found elsewhere [1]. 

This system demonstration exposes the key novel fea-
tures of QPipe, and also provides an intuitive way of visu-
alizing query execution inside the database engine. Unlike
modern commercial engines which are typically demon-
strated as “black boxes,” due to tight integration of system
components and query processing algorithms, QPipe natu-
rally breaks up query execution stages, allowing for a visu-
ally appealing demonstration. We organize the demo
storyline into three parts:

• Resource utilization and query progress. For a single
query, we show which µEngines are working in parallel,
the progress of the query, and the tuple flow between
relational operators. For multiple concurrent queries, we
show queue status and thread assignment at each
µEngine, along with opportunities for sharing data or
work across queries.

• Simultaneously pipelined query execution. By
switching QPipe to simultaneous pipelining mode, we
demonstrate the entire procedure of sharing overlapping
table scans or intermediate result computation across
different queries. All possible run-time actions of QPipe
are demonstrated through pre-designed scenarios.

• Ad-hoc query pipelines. QPipe allows external appli-
cations to submit ad-hoc query packets. The user is able
to construct and submit custom packets to QPipe
through a graphical user interface, and observe how
these are being evaluated.

2. Demonstration features
We demonstrate QPipe through a graphical user inter-

face that displays dynamically the state of all queries and
µEngines in the system. The GUI is implemented in Java
Swing (http://java.sun.com/docs/books/tutorial/
uiswing/). Due to space constraints we do not include
screenshots for configuring QPipe or selecting input que-
ries. The user can select a suite of standard TPC-H queries
or submit custom queries. QPipe has several parameters
accessible through the graphical interface. Each tuple
buffer’s size can be tuned manually. The µEngines are indi-
vidually configurable. Users can specify the number of
threads as well as the scheduling policy for the µEngines.
Once the users configure QPipe (or accept the default
parameters), they can select which query (or queries) to
submit to the engine, or select from a number of pre-speci-
fied scenarios (queries along with submission times). Fol-
lowing, we describe the three demo parts in more detail.

Resource utilization and query progress. Figure 1
shows the main execution window when two queries
(shown on the upper right corner) are running (the boxes
containing µEngines are dragged close together for better



printing). The execution window shows which threads are
working on which packet at each µEngine. For the Scan
µEngine, the progress of each table scan is continuously
shown. A slider bar allows pausing, playing, and step-by-
step replaying of the execution sequence. The top of Figure
1 shows the state of the query intermediate tuple buffers.
These are shown by clicking on the individual packets, and
can be moved around for better visibility. While on normal
operation these buffers fill up/drain at high rate, by replay-
ing the execution sequence the audience can track in detail
the progress of the query in each relational operator. The
audience can also track the state of the queues and the
thread assignment at each µEngine.

Simultaneously pipelined query execution. Once two
or more queries overlap by scanning the same table or by
computing the same intermediate result, we point out the
opportunity for sharing by raising a flag. The user can ver-
ify these opportunities by examining the set of files that are
being scanned (for the scan µEngine) or by examining the
work other µEngines perform on the packets. By switching
QPipe to simultaneous pipelining mode, we demonstrate
the entire procedure of sharing overlapping table scans or
intermediate result computation across different queries.

Sharing of concurrent scans is advertised in a number of
commercial systems (SQL Server 2000, Redbrick, and
Teradata), but the ability to share a scan is restricted to
unordered scans only (when the order reading the file does
not matter). QPipe, however, can also take advantage of

concurrent order-sensitive scans. We demonstrate such a
scenario, along with scenarios where queries share inter-
mediate computations, such as a join or a sort. When two
or more queries share a scan or computation, only one
packet performs the work, and the output tuples are simul-
taneously pipelined to all participating queries (the audi-
ence is able to see how the redundant intermediate buffers
are removed, and a single packet is linked to multiple con-
suming queries). More details about scenarios where que-
ries share order-sensitive scans or intermediate result
computation can be found elsewhere [1].

Ad-hoc query pipelines. In the last part of the demo,
we show how external applications can submit custom
query packets to QPipe and have them evaluated. Ad-hoc
query packets allow users to take advantage of the func-
tionality of a single µEngine, without needing to pass
through all the modules that are bundled into a traditional
DBMS system (such as the parser or the optimizer). We
provide an interface to construct arbitrary packets that can
be submitted to a single or multiple µEngines from outside
the DB engine. We demonstrate an example where the user
constructs and submits packets performing filter operations
on a set of given files stored in the database.

References
[1] S. Harizopoulos, V. Shkapenyuk, and A. Ailamaki. “QPipe: A
Simultaneously Pipelined Relational Query Engine.” In Proc.
SIGMOD, 2005.

µEngines

µEngine queue

queued packet
(waiting to be

worked on)

packets being
worked on

thread

active threads

table scan
progress

replay, pause, or play execution µEngine progress all queriesall packets
Figure 1. Main execution window (only three µEngines and two queries are shown for simplicity). Clicking
on a packet shows the input/output tuple buffers and their state (including final results). Buffers are linked
according to the query plan. Both buffers and µEngines can be dragged for improving display.

assignments

tuple buffers


