
An Ontology-based Framework for Dynamic Resource Management in
Ubiquitous Computing Environments

Ippokratis Pandis, John

Soldatos,
Athens Information
Technology (AIT)

19,5Km Markopoulo Avenue,
GR-19002, Peania, Athens,

Greece
{ipan, jsol}@ait.edu.gr

Alexander Paar, Jürgen Reuter
Institute for Program
Structures and Data

Organization
Am Fasanengarten 5,

76128 Karlsruhe,
Germany

{alexpaar, reuter}@ipd.uka.de

Michael Carras, Lazaros
Polymenakos

Athens Information
Technology (AIT)

19,5Km Markopoulo Avenue,
GR-19002, Peania, Athens,

Greece
{mjc, lcp}@ait.edu.gr

Abstract

Ubiquitous computing applications are supported
by sophisticated middleware components enabling
dynamic discovery, invocation and management of
resources, as well as reasoning in cases of uncertainty.
This paper advocates Semantic Web technologies as
primary vehicles to achieve dynamic management of
resources in ubiquitous computing infrastructures and
services. We introduce a framework for implementing
ubiquitous computing services comprising a large
number of sensors and perceptive interfaces,
emphasizing the role of knowledge bases for dynamic
registration and invocation of resources. We present
the use of ontology-based mechanisms for controlling
sensors and actuators. Moreover, we describe the
implementation of a knowledge base server that can
leverage different ontology management systems, while
also exposing a host to different client access
interfaces. The introduced framework has been
exploited in implementing real prototype ubiquitous
computing services, which we also outline in the paper.

1. Introduction

The ubiquitous computing vision [1] proposes an
essential paradigm shift in the way we use computers.
Among the core characteristics of ubiquitous
computing services is context awareness. Ubiquitous
computing applications derive contextual information
based on a rich collection of casually accessible, often
invisible sensors that are connected to a network
structure. Another characteristic of ubiquitous
computing environments is that they are dynamic,
since sensors, devices, components and services may
dynamically join or leave [2]. In order to support

context-awareness and dynamism, ubiquitous
computing environments comprise a wide range of
components including middleware for controlling
sensors and actuating devices, perceptual components
extracting context from sensor streams and information
fusion components combining context towards
identifying complex contextual states.

Both middleware and hardware components are
characterized by extreme diversity in terms of
functionality, underlying technologies and vendors.
Managing heterogeneity is crucial to facilitating
application development. In this paper we present an
architectural framework for ubiquitous computing
services, emphasizing on the mechanisms for dynamic
discovery, invocation and management of resources
(i.e. services, devices, networks, sensors, actuators,
perceptual and information fusion components). This
framework has been developed to support several non-
obtrusive services developed in the Computers in the
Human Interaction Loop (CHIL) project [6-7]. CHIL
deals with a large number of perceptual components
(e.g., 2D-visual components, 3D-visual perceptual
components, acoustic components, audio-visual
components, as well as output components). These
components are developed by several groups at four
different smart spaces (also called ‘smart rooms’). The
diversity of technology components, the complexity of
the services, as well as the number of collaborating
sites, pose integration challenges that existing
middleware architectures (e.g., [3-5]) fail to adequately
address. The framework proposed in this paper
addresses these challenges based on Semantic Web
technologies such as ontologies. Ontologies provide
semantic power in discovering resources and have
therefore added value over conventional registries
(e.g., UDDI [8]). Moreover, they support reasoning,

which is a prerequisite to building services using
diverse perceptual components.

The rest of the paper has the following structure:
Section 2 presents an overview of the structuring
principles of ubiquitous computing services developed
within CHIL. It presents the usage of ontologies and
focuses on the part of the architecture dealing with
dynamic management of resources based on
ontologies. Section 3, elaborates on the structure and
the implementation of the ontology and the knowledge
base. Section 4, describes prototypical applications that
exploit the overall architecture framework. Finally,
section 5 draws basic conclusions.

2. Overview of Ontology Based
Architectural Framework

2.1. Core Agent Framework

Our core agent framework (see also [2]) boosts the
reusability of components, and establishes a common
methodology for the development of services in a
ubiquitous computing environment. This framework:
(a) provides a set of basic services within each smart
room, like mechanisms to control the various sensors
and actuators in a common way, and subscription
mechanisms for the monitoring of the state of the
system, (b) allows augmentation and evolution of the
underlying infrastructure independently of the services
installed in the smart room, (c) controls user access to
services, (d) enables integration of new services, based
on a ‘pluggable’ mechanism.

Figure 1 depicts an anatomy of this multi-agent
framework. The various agents of this framework can
be classified in core agents, basic service agents and
ubiquitous service agents. Core agents are service and
smart room installation independent. They provide a
communication mechanism for the distributed entities
of the system, a set of basic services regarding the
control of the installed infrastructure, while also allow
service providers to ‘plug’ service logic into the
framework. Core agents include the Device Agent, the
Personal Agent, the Situation Watching Agent, the
Smart Room Agent, the Knowledge Base Agent and
the Agent Manager.

CHIL Agent Manager /
CHIL Service Agent Interface

MJA: Memory Jog Agent

CA: Connector Agent
SSWA: Socially Supportive Workspace Agent

ACA: Attention Cockpit Agent

CHIL Services

Agent Platform

CA SSWA ACA

MJ C SSW AC

Personal
Agent

Device
Agent

CHIL User

CHIL Knowledge
Base

User Front End

Sensors /
Actuators

Situation Modeling
Perceptual

Components/
Sensors

Notebook
Smartphone

PDA

Device
Desktop
Device

Interface

Situation
Watching

Agent

Smart Room
 Agent

Knowledge
Base Agent

MJA

Figure 1: Multi-agent system facilitating ubiquitous
computing applications.

The Device Agent adapts the device of the user
(e.g., PDAs, Smart Phone) to the rest of the system.
The Personal Agent maintains the user profile and
personalizes the services. The Situation Watching
Agent keeps track of contextual states. It offers a
subscription and a corresponding notification
mechanism, towards notifying interested agents of
contextual changes. The Smart Room Agent acts as a
proxy to the various infrastructure-specific services of
the system. The Knowledge Base Agent is a wrapper
of the interface of the implemented Knowledge Base
Server that exposes it to the agent platform. Finally, the
Agent Manager acts as a matchmaker. In case of a
service request (from another agent), it discovers
through the knowledge base which agent can solve the
problem and what resources are needed for this.

Basic Services Agents are plugged to the Core
Agents, while also exposing their capabilities through
the ontology management system. Two bundles of
basic services are supported: (a) Context awareness
services based on identification of situations
(according to the network of situations approach [7])
and (b) Services offered by sensors, actuators and other
devices of the smart room [2]. Core Agents wrap the
corresponding actual implementers of services and
allow them to cooperate with the rest of the system.
Ubiquitous service agents implement the non-obtrusive
intelligent service logic of the various context-aware
services. Each service is therefore implemented as a
Ubiquitous service agent and plugged into the
framework. A set of services is currently being
implemented and integrated into the framework
through the following agents: a Memory Jog Agent
(MJA), a Connector Agent (CA), a Socially Supportive
Workspaces Agent (SSWA), and an Attention Cockpit
Agent (ACA).

2.2. Role of the Ontologies

At the heart of the presented agent framework is an
ontology management mechanism that:
• Provides a registration mechanism for the

framework that acts as a yellow pages registry for
the discovery, manipulation, and integration of
needed resources of the system, such as sensors,
perceptual components, situation models and
context-aware services.

• Provides a permanent storage solution for the data
of the applications in a platform-, operating
system- and programming language- independent
way.

• Enables the interchangeability between the various
developed perceptual components. With the
adoption of a common ontology all the
participants in the project have a common
vocabulary for the perceptual components they
develop. Two perceptual components (developed
by different vendors), which provide the same
functionality, may be interchangeable if they
deliver the information in the same language.
Therefore, the perceptual components share their
knowledge and the ontology is used to annotate
data and functionality which is to be shared
between them.

• Facilitates the communication between the various
agents of the system. Part of the ontology is used
to model both the type and value of the content of
the messages which are exchanged among the
various agents of the system. Thus, the same
interoperability as well as interchangeability
benefits can be achieved as for perceptual
components.

2.2.1. Registration Mechanisms

Automatic discovery, binding and invocation of the
required components of a ubiquitous computing
application can greatly facilitate the portability of
services across different environments, while also
relaxing the effort required for configuring,
administering and operating such a complex distributed
system. Thus, we envisage a kind of ‘yellow pages’
service towards dynamically discovering and invoking
the components that offer the context-awareness,
required for a specific service. The ontology
management mechanism is used as a registration
mechanism in a four-fold way, as depicted in figure 2.
In particular, with the use of the developed ontology
for the system, we can register:

Installation-specific components: Sensors, devices
and actuators are registered with the ontology
following their installation. Registration information

includes elements about vendors, models, interfaces,
capabilities, network addresses, as well as the means to
access their capabilities (i.e. their API).

Perceptual components: Perceptual component
providers install and configure perceptual components
processing sensorial input. Given that the registry
contains information about sensors, actuators, their
physical and logical configuration, etc., the developer
of perceptual components consults this information
towards configuring and registering its components.
APIs for registering the perceptual components to the
directory services are provided. The various perceptual
components are categorized according to their inputs
and outputs, based on appropriate ontological concepts.

Situation Models: The situation model developer,
who builds situation models according to the network
of situations approach [7], obtains descriptions of
perceptual components and infrastructure elements, in
order to model context states. According to the
network of situations approach context cues can be
combined towards identifying higher level contextual
states. Situation models are also registered to the
directory service, along with its pointers to underlying
sensors, actuators and perceptual components. During
run-time parsing of a situation model these
components are dynamically discovered and invoked.

Services: Context-aware service logic is based on
service actions that are initiated when contextual
changes are identified. Service actions are defined and
registered in the directory service. Entire context-aware
services are also registered to facilitate their activation
and exploitation by other services.

Sensors,
Actuators,
Gateways,
Services

Perceptual
Components

Situation Models

Context-Aware
Services

Knowledge
Base
Server Knowledge Base

Infrastructure
Installer

Perceptual Component
Developer

Situation
Modeler

Service
Developer

Developer Types Registries Server

Register installation-
specific components

Retrieve sensor, actuator,
etc. info

Register Perceptual
components

Retrieve Perceptual
components information

Register Situation
Models

Register Context-Aware
services

Figure 2: Registration mechanism with the usage of
ontologies as a horizontal element of the
implemented framework.

2.2.2. Sensor /Actuator Control
Part of the ontology is dedicated to sensor and

actuator information (e.g., vendor, model, current
status of the device, interfaces, capabilities, network
addresses). This information is accessible to other
agents of the system through the KBA. Monitoring
and control of sensors and actuators is performed
through the special proxy agents that represent the
sensor or actuator in the world of agents. Proxy agents,
register the device to the knowledge base, upon
bootstrapping of the device. Moreover, they update the
operational state of the device in the registry whenever
its status changes. Proxy agents provide information
regarding the sensor/actuator state (i.e. to other agents),
while also enabling other agents to execute control
commands on them. Control commands might be
required with a view to regulating the environment.
Note that proxy agents provide a degree of abstraction:
each proxy exposes a universal virtualized interface to
the agent framework (i.e. a common interface for
sensors/actuators of the same type). A sensor-actuator
specific driver is required to adapt the universal
interface commands to the low-level capabilities of
each particular sensor or actuator. This low-level driver
is based on the control API offered by the sensor or
actuator (e.g., IEEE1394 camera). We have actually
implemented three proxy agents: one generic, one for
microphones and one for cameras.

2.2.3. Smart Room Services

The ontology includes high-level descriptions of
value-adding services installed in the infrastructure
(e.g., text-to-speech (TTS) services, display services).
A mechanism for controlling smart room services has
been also implemented, similarly to the one described
for the control of the sensors and actuators. A wrapper
agent represents the services available to the agent
platform, enables communication with the rest of the
framework, translates requests from the various clients
to service-specific calls, and interacts with the
knowledge base. All the services that provide the same
functionality (e.g.,. all the TTS services) are wrapped
by a service proxy of this type (e.g,. a TTS proxy).
Hence, all the requests for such a service are being
forwarded to the proxy of that service, which
determines the specific implementation that will handle
the request. The proxy retrieves (from the knowledge
base) run-time information about the properties and the
operational status of the actual services and then takes
the decision.

The algorithm for deciding which service is the
most appropriate for a request depends on the proxy
implementation. For example, in the case of four
different operational TTS service instances, the TTS
service proxy would decide to forward the request to

the machine that it is nearer to the service target, while
a display or targeted-audio service proxy would decide
to forward the request to the machine ‘opposite’ to the
target.

Figure 3 illustrates the mechanism enabling
discovery of (actuating) services. The proxy of a
service registers to the system (step A). All the
providers of this specific service also register
themselves into the system (step B). Whenever a client
makes a request for a service invocation, it sends this
request to the gateway for all the services (step 1),
which is the Smart Room Agent (SRA). The SRA
searches the registry for a proxy for such a service
(step 2) and forwards the request to it (step 3). When
the service proxy receives a request, it checks the
registry for available service providers (step 4), and
activates a selection algorithm to decide to which
provider to forward the request (step 5). All the
searches in the knowledge base are performed at run-
time, to allow for service providers to dynamically
join/leave the system.

Client

Smart Room
Agent

Service A
Proxy

Service
Provider A

Service
Provider B

Service
Provider C

Knowledge
Base

Request

Query Registered
Service Proxies

Forward
Request

Register/
Deregister

Forward
Request

Register/
Deregister

Query Registered
Service Implementers

1

2

3

4

5

B

A

Knowledge Base Server

KB API

Figure 3: Dynamic discovery and invocation
mechanism for actuating services.

The following section takes a more technical and
detailed look into the design of the ontology that is
currently being used in the context of the CHIL
research project, as well as, into the implementation of
the knowledge base and its corresponding server
software.

3. The CHIL Ontology and Knowledge
Base Implementation

Ontologies use description logic [9] to
hierarchically classify and describe entities and
relations between them. In implementing an ontology
prototype we selected the Web Ontology Language
OWL [10] as a standard technology for inter-
component and inter-host communication. Besides the
ontology itself, we implemented a Knowledge Base
Server, which manages ontologies and ontology based
information.

3.1. Overall Structure of the CHIL Ontology

The CHIL ontology strives to establish a general-
purpose core vocabulary (i.e. conceptual knowledge)
for the various concepts within a multi-sensor smart
space and context-aware applications executed within
it. In order to minimize the complexity of the overall
ontology, we modularized the ontology allowing
different parts to be used in different contexts and
applications. The owl:imports statement of OWL
perfectly meets the goal of modularization, and allows
modules to live in a namespace of their own. In this
way, name collisions can be avoided. Separated
namespaces are ideal for collaborative work:
developers may safely introduce new concepts locally
in their module's name-space without interfering with
other modules. Assuming that other modules use
similar concepts which should be merged, the core
module may provide a merged version of the concept.
To globally put together all the modules, the ontology
consists of a main OWL file, which imports all
modules. Developers interested only in a subset of
modules can define a main OWL file of their own that
imports only the modules of interest.

Besides the main OWL file, the ontology consists of
the core module chil-core, a communication agent
module chil-ca, and an example module chil-
isl; more are likely to be added in the future. The
former two modules contain conceptual knowledge,
also known as terminological- or TBox knowledge.
This kind of knowledge provides the vocabulary that is
required to describe an environment or a situation. The
actual description is realized with assertional- or ABox
knowledge. The chil-isl module prototypically
illustrates the setup of a smart room in terms of the
conceptual knowledge of the other modules.

3.2. CHIL Ontology for Perceptual
Components and Situation Modeling

A major purpose of the ontology is to facilitate the
lookup of Perceptual Components (PCs) by describing
what kind of information they provide. The CHIL
ontology provides the vocabulary to describe the kind
of information a PC can deliver (e.g. coordinates of a
person). Accordingly, the chil-core module
introduces concepts of perceivable entities such as for
example Person, MeetingRoom, Table or
Whiteboard, as well as perceivable roles of such
entities, e.g. the Location of a Person or the
ActivityLevel of a MeetingRoom. PCs require
and provide data in manifold formats and on a range of
abstraction levels, not only on the high level of
concepts and roles that we just described. The ontology

provides a rudimentary set of vocabulary on data
formats such as audio or video streams. In this way,
PCs can be functionally characterized and looked up
by their interface input and output data types,
regardless of their level of abstraction and internal
structure.

The ontology describes also situations and actions
towards situation modeling. For modeling
chronological arrangement of events, we follow James
F. Allen's temporal logic [11]. Assuming that precise
points in time can not be modeled anyways, we instead
base the chronological relation of events on intervals
that may touch, overlap, be included, or stay side by
side without touching each other. Allen's temporal
logic rises to its full power when applying the set of
first-order logical rules that Allen presents. This is
currently not possible with plain OWL. However, there
are several approaches underway which are aiming at
adding rules to OWL (e.g., [12]). Currently, rule-based
reasoning itself is done outside of the ontological
framework. Still, however, the ontological framework
can store ontological data that an external rule-based
reasoner can access.

3.2.3. Ontological Reasoning with OWL

Ontologies are used to model the knowledge of an
application domain in a structured and formally well-
understood way. There are algorithms that provide
sound and complete reasoning for the description logic
SHIQ [13]. Reasoning is important to ensure the quality
of an ontology and to fully exploit its rich structure.
Though we do not rely on ontological reasoning in the
scope of our applications, our overall architecture
supports a future implementation. Following we give
three examples that introduce the OWL features
inverse properties, transitive properties, and nominals.

Inverse Properties: If an OWL property P1 is tagged
as the owl:inverseOf OWL property P2, then for
all x and y: P1(x,y) iff P2(y,x). Let
Meeting and Person be two OWL classes and
Meeting hasParticipant Person and
Person attendsMeeting Meeting be two
OWL properties where hasParticipant is
declared to be the owl:inverseOf of
attendsMeeting. Further, let Person(JIM) be
an instance of Person and
Meeting(CHIL_MEETING) be an instance of
Meeting. Given the fact that JIM attends-
Meeting CHIL_MEETING, calling the method
listPropertyValuesOfIndividual(“hasParticipant”
, “CHIL_MEETING”) of the CHIL Knowledge Base
Server, which returns all OWL instances that are
values of the specified OWL property of the specified

OWL instance, would yield JIM although one has
never explicitly stated this fact. Instead, it is computed
by the OWL reasoner based on the fact that the OWL
property hasParticipant is the
owl:inverseOf of the OWL property
attendsMeeting.

Transitive Properties If an OWL property P is
specified as transitive, then for any x, y, and z:
P(x,z) if P(x,y) and P(y,z). Let the OWL
classes MeetingRoom, MeetingVenue, and
Person be subsumed by LocatableThing and let
LocatableThing locatedIn Locatable-
Thing be declared as a transitive property. Given the
facts MeetingRoom(ROOM3), MeetingVenue
(HOTELADLON), Person(JIM), and JIM
locatedIn ROOM3, calling the CHIL Knowledge
Base Server method listIndividuals (“Person”,
“locatedIn”, “HOTELADLON”), which returns all
OWL instances of the specified type whose specified
OWL property value equals the specified value, would
yield JIM, although one has never explicitly said that
JIM is locatedIn HOTELADLON.

Nominals: Nominals are special class names that are
to be treated as singleton sets. Given the classes
FaceRecognizer, DoorObserver (both
subsumed by PerceptualComponent), Door
(subsumed by LocatableThing), and the property
PerceptualComponent pointsTo
LocatableThing, one could express that a
PerceptualComponent which pointsTo a
Door is a DoorObserver. Given the facts
FaceRecognizer(MY_RECO), Door(DOOR3),
and MY_RECO pointsTo DOOR3, calling the CHIL
Knowledge Base Server method listIndividualsOfClass
(“DoorObserver”), which returns all OWL
instances that have the specified OWL class among
their types, would yield MY_RECO although MY_RECO
has never been explicitly declared as a
DoorObserver.

3.3 The CHIL Knowledge Base Server

Despite the rise of OWL as the lingua franca for the
Semantic Web, there is still a lack of commonly used
APIs and widely accepted tools for processing
ontological information. Managing OWL data is still
error prone and laborious. Also, most off-the-shelf
ontology management systems lack connectivity,
which makes it difficult to connect to these systems
using programming languages that are not natively
supported. Widely used ontology management systems
(e.g., [13-15]) can only be accessed locally within a

Java software environment. There is no common way
for remote access via for example Java RMI. On the
other hand, there are programming language agnostic
remoting APIs such as DIG [16]. Nevertheless, these
APIs provide limited support for error- and exception
handling, as well as for preserving the consistency of
managed ontologies. Moreover, these APIs are not
specifically tailored to OWL.

In the scope of our knowledge base, we developed
an adapter for off-the-shelf ontology management
systems that makes it easy to benefit from readily
available inferencing technology, while also
facilitating connectivity to several programming
languages. This software adapter is referred to as CHIL
Knowledge Base Server. This server is accessible both
locally and remotely through a unique interface. Since
client components in a pervasive computing
environment may be written in a variety of
programming languages, the remote interface is
programming language independent. Also internal and
external data representations are architecture
independent to avoid interoperability problems (e.g.
byte order, little-/big endian number representations).
The server can cope well with multiple, potentially
competing incoming requests in parallel (i.e. thread
safe server design). Finally, the Knowledge Base
Server API is tailored to OWL.

Figure 4 depicts the architectural model of the
CHIL Knowledge Base Server. Emphasis was put on
providing flexible connectivity capabilities and to
make it easy to use different underlying ontology
management systems based on a uniform client API.
Design Patterns and Java reflection were used in order
to plug in hosts for arbitrary remoting protocols
dynamically at runtime and to replace the underlying
ontology management system and/or its persistency
policies.

The interface IOntology defines an API for
editing and querying OWL ontologies. Currently, 150
methods are approximately defined to tell and ask the
ABox and TBox of an OWL DL based ontology [17].
Off-the-shelf ontology management systems are
wrapped by IOntology implementations. In Figure 4
the class OntologyJena2 would adapt to HP Labs’ Jena
2 framework. The interface IKnowledgeBase
extends not only IOntology but also
java.rmi.Remote to identify it as an interface
whose methods can be invoked from remote. Thus, the
Java RMI port is different from other remoting hosts
which are to be implemented as extensions of the
abstract base class KnowledgeBaseServer that
defines methods to bind and unbind the respective
remoting host. These server implementations are
aggregated by KnowledgeBaseServerHost and

refer to the singleton instance of KnowledgeBase.
This instance handles all incoming requests from Java
RMI and all aggregated remote hosts. Persistence
capabilities are defined by the IPersistence
interface inheriting to IKnowledgeBase. It is
possible to either use built in persistence capabilities of
the underlying ontology management system or to
extend these features. Thus, one can combine off-the-
shelf ontology inference-, manipulation-, and
persistence features from a variety of systems.

The Knowledge Base Server was implemented as
an Eclipse plug-in and is hosted by instances of the
Eclipse workbench (http://www.eclipse.org). A “New
Knowledge Base Wizard” lets one chose the underlying
ontology management system and the remoting
protocols that are to be hosted by this instance of the
Knowledge Base Server. The wizard creates adapters
for ontology management systems and remoting
protocol hosts. Thus, it is possible to dynamically
deploy extensions to the Knowledge Base Server.
Ontology management system adapters are available
for HP Labs’ Jena 2 and IBM’s Semantic Network
Base. Beyond Java RMI, an XML-over-TCP API was
implemented to provide programming language
independent access to the Knowledge Base Server.
Client libraries are available for C#, C++, and Python.

Figure 4: Architectural model of the CHIL
Knowledge Base Server.

4. Proof-of-Concept Applications

The goal of the Memory Jog (MJ) service [2, 7] is
to provide pertinent non-obtrusive information in the
scope of meetings, lectures and presentations. The
service is designed to automatically provide contextual
information (i.e. in a non intrusive manner), but also to
respond to user requests (i.e. in an on-demand mode).
The MJ is built according to the overall framework
depicted in Figure 1, and makes extensive use of the
ontology. In particular, it uses the ontology as a
registry towards discovering localization and tracking
components (i.e. visual person trackers and acoustic
localizers). The use of the ontology has greatly

facilitated the task of interfacing service logic
components to perceptual components. Moreover, the
MJ relies on the sensor, actuator and service control
frameworks to access the capabilities of output services
(e.g., TTS). Based on these frameworks, MJ
developers focus on the service logic and are
decoupled from the tasks of querying and testing
service availability. Moreover, these frameworks are
used to provide add-value services, such as the
intelligent display service.

The Intelligent Display service provides streams for
display to the most ‘appropriate’ display device based
on contextual information. This service exploits the
capabilities of the service control framework that has
been developed. The service subscribes to the context-
acquisition system (i.e. through the Situation Modeling
Agent) and thereafter gets continuous notifications
about the position and the orientation of the various
actors. Using the ontology-based registry the service
gets information about operational display devices.
Accordingly, ontological reasoning is used to provide
an optimal uninterrupted display of streams, messages,
presentations, etc. When the targeted user changes his
position the service is notified and (if needs be) the
stream is transferred from one device to another.

5. Conclusions and Future Work

Ubiquitous computing services comprise a wide
range of distributed heterogeneous hardware, software
and middleware components. Establishing structuring
principles for integrating these components is a key
prerequisite to easing the implementation and
increasing the penetration of emerging ubiquitous
computing applications. All major ubiquitous
computing projects have established sophisticated
middleware architectures, which however do not
account for the challenges of integrating a large
number of perceptual and information fusion
components over multi-senor infrastructures. These
challenges relate to the establishment of intelligent
methods for discovering, invoking and managing
distributed components, as well as to the availability of
reasoning mechanisms in cases of uncertainty.
Emerging semantic web technologies have the
potential to successfully tackle these issues.

In the scope of the CHIL project we have worked
out an architectural framework for ubiquitous
computing services in the scope of in-door
environments. This framework relies on a knowledge
base for dynamically discovering and invoking
components. It is therefore appropriate for dealing with
the dynamic nature of ubiquitous computing
applications, where sensors and devices are likely to

dynamically join or leave the environment. We have
developed a sensor and actuator control framework,
which underpins some of the values of the CHIL
ontology.

In implementing the knowledge base server we
have accounted for the need to support different
ontology management systems, as well as for the need
to enabling client access based on a variety of
interfaces. To this end, appropriate adapter modules
have been implemented to different ontology
management systems, along with utilities automatically
generating client code.

The use of the knowledge base server in the scope
of real prototype ubiquitous computing applications
has manifested the benefits of the ontology middleware
in building and deploying applications. It is within our
plans to use the ontology to register the whole range of
middleware components used in MJ. We also intend to
leverage the reasoning capabilities of the ontology.

6. Acknowledgments

This work is part of the FP6 CHIL project (FP6-
506909), partially funded by the European
Commission under the Information Society
Technology (IST) program. The authors acknowledge
valuable help and contributions from all partners of the
project.

7. References

[1] Weiser, M. (1991). The Computer for the 21st Century.
In Scientific American, vol. 265, no. 3, 1991, pp. 66–75.

[2] Soldatos, J., Pandis, I., Stamatis, K., Polymenakos, L.,
and Crowley, J. L. (2004). Agent Based Middleware
Infrastructure for Autonomous Context-Aware Computing
Services. Accepted for publication in the Journal of
Computer Communications, Elsevier.

[3] Johanson, B., Fox, A., Winograd, T. (2002). The
Interactive Workspaces Project: Experiences with Ubiquitous
Computing Rooms. In IEEE Pervasive Computing Magazine
1(2), April-June 2002.

[4] Garlan, D., Siewiorek, D., Smailagic, A., and Steenkiste,
P. (2002). Project Aura: Towards distraction-free pervasive
computing. In IEEE Pervasive Computing, pp. 22–31, 2002.

[5] Saif, U., Pham, H., Paluska, J. M., Waterman, J., Terman,
C., Ward, S. (2003). A Case for Goal-oriented Programming
Semantics. In System Support for Ubiquitous Computing
Workshop at the 5th Annual Conference on Ubiquitous
Computing (UbiComp '03).

[6] The Computer in the Human Interaction Loop (CHIL)
project. At address: http://chil.server.de.

[7] Soldatos, J., Polymenakos, L., Pnevmatikakis, A.,
Talantzis, F., Stamatis K., and Carras M. (2005). Perceptual
Interfaces and Distributed Agents supporting Ubiquitous
Computing Services. In the Proceedings of the Eurescom
Summit 2005, April 2005, pp. 43-50.

[8] Bellwood, T. et al. (2003). The Universal Description,
Discovery and Integration (UDDI) specification. Version 3,
2003. At address: http://www.uddi.org/.

[9] Bader, F., Calvanese, D., McGuiness, D., Nardi, D.,
Patel-Schneider, P. (2003). The Description Logic
Handbook, Cambridge University Press, 2003.

[10] W3C Recommendation: OWL Web Ontology Language
Overview (2004). At address: http://www.w3.org/TR/owl-
features/.

[11] Allen, J.F. (1984). Towards a general theory of action
and time. In Artificial Intelligence, vol..23(2):123-154.

[12] W3C Member Submission: SWRL (2004). A Semantic
Web Rule Language Combining OWL and RuleML. At
address: http://www.w3.org/Submission/SWRL/.

[13] HP Labs: Jena 2 - A Semantic Web Framework (2004).
At address: http://www.hpl.hp.com/semweb/jena.htm.

[14] Stanford University School of Medicine: Protégé
knowledge acquisition system (2003). At address:
http://protege.stanford.edu/.

[15] IBM Alphaworks: Snobase - IBM Ontology
Management System (2003).
http://alphaworks.ibm.com/tech/snobase.

[16] Bechhofer, S. (2003). The DIG Description Logic
Interface: DIG/1.1, University of Manchester.

[17] W3C Recommendation: OWL Web Ontology Language
Guide (2004). At address: http://www.w3.org/TR/2004/REC-
owl-guide-20040210/.

