A Data-oriented Transaction Execution Engine and
Supporting Tools

Pinar Tozin#
Ryan Johnson®

Ippokratis Pandis™

TCarnegie Mellon University TEPFL

Pittsburgh, PA, USA

ABSTRACT

Conventional OLTP systems assign each transaction to a worker
thread and that thread accesses data, depending on what the
transaction dictates. This thread-to-transaction work assignment
policy leads to unpredictable accesses. The unpredictability forces
each thread to enter a large number of critical sections for the
completion of even the simplest of the transactions; leading to poor
performance and scalability on modern manycore hardware.

This demonstration highlights the chaotic access patterns of
conventional OLTP designs which are the source of scalability
problems. Then, it presents a working prototype of a transaction
processing engine that follows a non-conventional architecture,
called data-oriented or DORA. DORA is designed around the
thread-to-data work assignment policy. It distributes the
transaction execution to multiple threads and offers predictable
accesses. By design, DORA can decentralize the lock management
service, and thereby eliminate the critical sections executed inside
the lock manager. We explain the design of the system and
show that it more efficiently utilizes the abundant processing
power of modern hardware, always contrasting it against the
conventional execution. In addition, we present different
components of the system, such as a dynamic load balancer.
Finally, we present a set of tools that enable the development
of applications that use DORA.

Categories and Subject Descriptors

H.2.4 [Database Management]:
processing.

Systems - transaction

General Terms

Management, Performance, Design.

Keywords

Data-oriented transaction execution, DORA, Runtime re-
balancing, Transaction flow graph generation, Partitioning.

1. INTRODUCTION

The emergence of manycore processors as the dominant processor
technology has several implications in the design of database
management systems [3]. On-line transaction processing (OLTP),
as one of the most important and also complicated database
management applications, is greatly affected by the emergence of
this new technology.

Copyright is held by the author/owner(s).
SIGMOD’11, June 12-16, 2011, Athens, Greece.
ACM 978-1-4503-0661-4/11/06.

Miguel Branco#
Anastasia Ailamaki*t

Lausanne, VD, Switzerland

Dimitris Karampinas* Danica Porobict

"University of Toronto
Toronto, ON, Canada

#University of Patras
Rio, Greece

The majority of the transaction processing systems were designed
in an era during which most computers were uniprocessors with
high latency I/O subsystems. Therefore, such systems feature high
concurrency —support for multiple in progress operations— to
interleave the execution of a large number of transactions, most of
which are idle waiting for I/O completions or processor cycles, at
any given moment. As the number of processing cores per
processor increases, in step with Moore’s law, the transaction
processing systems need to exhibit equally high execution
parallelism —support for concurrent operations to proceed
simultaneously. Unfortunately, internal serializations often prevent
the conventional transaction processing systems to translate the
high concurrency of transactional workloads to proportionally
high execution parallelism and performance [5].

The conventional transaction processing systems follow a thread-
to-transaction policy of assigning work to threads. Each incoming
transaction is assigned to a worker thread and it is the transaction
that dictates what data that worker thread will access. The random
nature of the requests for the majority of transaction workloads
leads to unpredictable accesses. Hence, each thread has to acquire
logical locks through a centralized lock manager and enter a large
number of critical sections, even for the completion of simple
transactions; eventually leading to poor performance and
scalability due to contention inside the lock manager.

1.1 Data Oriented Architecture (DORA)

To address the growing bottleneck presented by the
conventional transaction execution, we have designed a system
around a thread-to-data assignment of work policy [6]. The, so
called, DORA design takes the novel approach of breaking
each transaction to smaller requests and sending work to where
the data resides in the system. By concentrating related
requests for data accesses together, the system is able to
coordinate them efficiently and in a largely distributed fashion.

DORA decomposes the database into logical partitions. The
partitioning is enforced by a set of routing rules, one per table.
Upon a reception of a new transaction, DORA decomposes it
into a set of actions based on the routing rules and the data this
transaction intends to access.

Similar to the operator-centric approach used by QPipe query
processor [2], DORA creates largely independent micro-
engines, or worker threads, each of which handles all requests
for a partition of the data from the database. Each worker
thread receives actions and executes them in a sequential
fashion while maintaining a private lock table. The lock table
enforces consistency among concurrent actions: it only allows
actions that have no conflicting accesses to complete. Thus, it
guarantees that an action that can execute and complete legally
according to the local lock table, can also execute without any
restriction and complete in the scope of the entire database.

Hence, when the worker thread executes an action, it bypasses
the centralized lock manager.

The threads that serve actions on behalf of the same request
share common objects, called the rendezvous points (RVPs),
which are initialized to the number of threads that have to
report to them. Each thread serves requests in isolation and
updates the counter of the corresponding RVP upon
completion. The last thread to report on a rendezvous point
decides whether the corresponding transaction should commit
or abort, or whether a new set of actions needs to be submitted
to the system. Upon the system-wide completion of the
transaction, each worker thread that participated in its
execution updates the local lock tables, possibly allowing
actions on behalf of other transactions to proceed.

Finally, unlike traditional shared-nothing approaches (e.g.,
[7]), the partitions in DORA are purely logical and serve only
to distribute requests evenly throughout the system. There is
no need for executing distributed transactions, with all the
accompanying overheads [4][1]. When changes in load or
access patterns result in an imbalance, DORA easily re-
partitions the database, adapting to the change.

Further details about DORA can be found at [6].

1.2 Demonstration

This system demonstration exposes the key novel features of
DORA and also provides an intuitive way of visualizing the
effects of varying load, access patterns, and partitioning
decisions within the database engine. Traditional engines are
typically demonstrated as “black boxes,” due to tight
integration of system components. DORA, on the other hand,
naturally breaks up transaction processing to independent
actions and has different worker threads to execute each
action, allowing for a visually appealing demonstration.

We implemented a DORA prototype on top of Shore-MT [5], a
storage manager developed specifically to take advantage of
manycore hardware. Shore-MT provides the access methods
and the buffer pool, logging, and recovery services. The
modifications needed in Shore-MT were minimal.

The demonstration presents two main components:

Live Systems: A fully interactive demonstration of a live
conventional system and a DORA prototype running on
identical manycore hardware. The user will be able to modify
system parameters and workload characteristics, including the
number of hardware contexts available to the system, number
of clients, transaction mix, and skewness of data accesses.
They will be able to watch various system statistics and
compare the behavior of the two systems, noticing the contrast
between the unpredictable accesses of the conventional system
and the predictable ones by DORA.

Designer: We exhibit two tools which can be used for the
development of applications over partitioning-based systems,
such as DORA. The first tool is a semi-automated transaction
plan generator for DORA. The user can input arbitrary transactions
(in SQL text), see the generated execution plans, modify and run
them. The second tool is for automating the physical design. Given
a workload, this tool, suggests a set of indexes along with the
partitioning scheme in order to balance the load across the system
and minimize the non-partitioning aligned accesses.

All stories are demonstrated through pre-designed scenarios.
We also have traces of the scenarios, to be able to demonstrate
them even in case of connectivity problems with the server.
Next we will describe in detail the demonstration story line and
conclude with the “take-away” message for this demonstration.

2. STORY LINE

The demonstration consists of three parts. The first part underlines
the problems of conventional OLTP designs, and introduces the
viewer to the concept of DORA. Next, through a monitor that is
connected to a live conventional system and a DORA prototype,
the viewer can modify multiple workload parameters and see how
the two systems behave. The third part presents two developer
support tools for partitioning-based OLTP systems; one that can be
used for the semi-automated generation of transactions and the
other one for automating the physical design.

2.1 Part 1: Introduction

A poster and a set of slides are used to highlight the inherent
scalability problems of conventional OLTP designs and
introduce the viewer to the concept of data-oriented execution.
We highlight key features of the system and illustrate how
DORA handles challenges that arise while processing
transactions. We show how a single transaction is broken to a
set of actions (which can proceed in parallel) and rendezvous
points, and executed. For multiple transactions we show how
actions are queued up in their partition and how the partition
“owner” worker thread executes them by decentralizing the
lock manager, while isolation is maintained.

2.2 Part 2: Live Systems

This part of the demonstration will use a graphical user
interface (as in Figure 1) which monitors, through a socket
interface, a live conventional system and the DORA prototype
running on identical machines. Both systems are build over the
same storage engine (Shore-MT).

The main system overview panel provides real-time statistics
about the two systems. The DORA monitor shows the
throughput and utilization of the different worker threads
(micro-engines) along with the data partitioning information
which dynamically changes, as DORA adjusts to reflect
workload changes. A workload panel allows the user to modify
load parameters, such as number of clients, the mix of
transactions to execute, and the distribution of data accesses.
Below we describe the main exhibited scenarios.

Access Patterns. The user decides between pre-defined
workloads (e.g., TATP and TPC-C) and can see the accesses
made to the database records of each table by the various
threads in the two systems, as shown in Figure 1. The accesses
of the conventional system are random while in DORA there is
a predictable order.

Performance Under Varying Load. The user can vary the
hardware resources the two systems may utilize, as well as
other workload parameters, such as the number of clients and
their think times. We demonstrate how DORA maintains high
performance as load varies from idle to saturated or to
oversubscribed. During idle execution, DORA exploits intra-
transaction parallelism to improve response times and machine
utilization; during busy periods, the system benefits from
reduced overhead by avoiding centralized lock management;
during oversubscribed periods, the queues naturally impose a
form of admission control that allows the system to maintain
peak throughput long after the traditional system begins to lag.

Load balancing. We present two load balancing components
through a load and accesses overview panel. The first component
observes the action queues of each worker thread and re-partitions,
reducing the load of threads whose input queue is long, while
merging partitions of the threads whose action queues are not
loaded. In the demo, the user can select from several types of
distribution functions to specify the kind of skew and also slide it

Ll Live &l Designer E@ﬁ
Workloads System Overview ~ Access Patterns | Varying Load/HW | Load Balancing
DORA Conventional _
rSQL rTFG
R g in PR e orGin B pEETER
H SELECT COUNT[C_ID} INTO NAMECNT /_ — - __\\ I‘ -",\ruili -
v FROM CUSTOMER y
- 2 = Il o e
— o C_LAST= _C_LAST 3 _u_li_].
E o ANDC_D_ID=_D_ID
& E ANDC_W_ID=_W_ID; ®
br—g DECLARE C_BYNAME CURSOR FOR —
Q D SELECT C_1D f/II_rLSI) \
o S
FROM CUSTOMER r——
¥ WHERE B Y
Time Time Generate | | Run

Figure 1. The monitor of the live systems

around to vary the locations of “hot spots.” With each change,
DORA adapts its partitioning, in real-time, to maintain the highest
possible performance.

A second component aims to reduce non-partitioning aligned
accesses, which significantly reduce the performance of DORA.
When it observes a rapid increase in the number of non-partition
aligned accesses, it suggests adjusting the partitions based on the
fields that are most frequently used making most of the accesses
aligned to the partitioning again. For this part, the user starts
executing a transaction which accesses fields other than those used
for the partitioning, reducing performance. The increasing
frequency of non-partitioning aligned accesses will be observed
and the tool will suggest to re-organize the partitioning scheme
according to the new access field for improving performance.

2.3 Part 3: Designer

We have developed a set of tools that facilitate the
implementation of transactions and the physical design of
partitioning-based OLTP systems. We use a second graphical
user interface (shown in Figure 2) to demonstrate those tools.

Semi-automated transaction generation. DORA decomposes
transactions into a set of actions and rendezvous points (RVPs),
which are placed between actions with data dependencies that need
to execute sequentially. The graph of actions and RVPs constitute
the flow graph of the transaction.

This tool automatically generates transaction flow graphs and
allows the user to modify them (e.g., selecting to run actions in
parallel or serially), as long as the data dependencies allow.
Modifying the order of some actions can be useful, for example, in
the case of actions with high abort frequency. In the demo, as
shown in Figure 2, the user can input arbitrary transactions in
SQL, see the generated execution plans, modify and run them.

Semi-automated physical design. DORA applies logical-only
partitioning which makes it highly flexible to modify. This tool,
given a workload, tries to balance the load across the system and
minimize the non-partitioning aligned accesses. The user inputs a
workload as a set of transactions with their expected execution
frequencies. Then, the tool suggests a partitioning scheme to
reduce the need of re-partitioning at run time. The suggestions
include which fields should be used for partitioning each table, the
number of partitions, and the size of each partition. Also, it
proposes the physical design of the indexes to be used. For
example, it may propose to prepend a column in an index, which
initially wouldn’t have that column, because this column is used
for the partitioning and prepending this column would reduce the
number of non-partitioning aligned accesses. This tool can be

Figure 2. The DORA designer

employed for the development of applications for other
partitioning-based OLTP systems (such as [7]) as well.

3. “TAKE-AWAY” MESSAGE

This demonstration highlights the inherent scalability
limitations of conventional OLTP designs, stemming from
their unpredictable access patterns. Then, it presents a working
prototype of a transaction processing engine that follows the
principles of a non-conventional data-oriented architecture,
which offers predictability in the data accesses. This change in
the architecture allows to decentralize services, such as the
lock management, which typically require the execution of
contented critical sections and thereby are performance
bottlenecks. We explain the design of DORA and present a set
of tools that enable the development of applications that use it.
We show that this logical partitioning based design achieves
the goal of improved performance and scalability, while it is
capable of reacting to load imbalances quickly and the
development of applications for it is simple.

4. ACKNOWLEDGEMENTS

This work was partially supported by Sloan research
fellowship, NSF grants CCR-0205544, 11S-0133686, and IIS-
0713409, an ESF EurYI award, and SNF funds.

5. REFERENCES

[1] C. Curino, E. Jones, Y. Zhang, and S. Madden. “Schism: a
workload-driven approach to database replication and
partitioning.” In VLDB, 2010.

[2] K. Gao, S. Harizopoulos, I. Pandis, V. Shkapenyuk, and A.
Ailamaki. “Simultaneous pipelining in QPipe: exploiting
work sharing opportunities across queries.” In /CDE, 2006.

[3] N. Hardavellas, I. Pandis, R. Johnson, N. Mancheril, A.
Ailamaki, and B. Falsafi. “Database servers on chip multi-
processors: limitations and opportunities.” In CIDR, 2007.

[4] P. Helland. “Life beyond distributed transactions: an
apostate's opinion.” In CIDR, 2007.

[5] R.Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and B.
Falsafi. “Shore-MT: a scalable storage manager for the
multicore era.” In EDBT, 2009.

[6] I.Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki.
“Data-oriented transaction execution.” PVLDB 3(1), 2010.

[71 M. Stonebraker, S. Madden, D. Abadi, S. Harizopoulos, N.
Hachem, and P. Helland. “The end of an architectural era (it's
time for a complete rewrite).” In VLDB, 2007.

	A Data-oriented Transaction Execution Engine and Supporting Tools
	Abstract
	Categories and Subject Descriptors
	General Terms
	Keywords
	1. Introduction
	1.1 Data Oriented Architecture (DORA)
	1.2 Demonstration

	2. Story line
	2.1 Part 1: Introduction
	2.2 Part 2: Live Systems
	2.3 Part 3: Designer

	3. “Take-away” message
	4. Acknowledgements
	5. References

