
TPC-E vs. TPC-C: Characterizing the New TPC-E
Benchmark via an I/O Comparison Study

Shimin Chen1, Anastasia Ailamaki2, Manos Athanassoulis2, Phillip B. Gibbons1

Ryan Johnson3, Ippokratis Pandis3, Radu Stoica2

1Intel Labs Pittsburgh 2École Polytechnique Fédérale de Lausanne 3Carnegie Mellon University

ABSTRACT

TPC-E is a new OLTP benchmark recently approved by

the Transaction Processing Performance Council (TPC).

In this paper, we compare TPC-E with the familiar TPC-

C benchmark in order to understand the behavior of the

new TPC-E benchmark. In particular, we compare the

I/O access patterns of the two benchmarks by analyzing

two OLTP disk traces. We find that (i) TPC-E is more

read intensive with a 9.7:1 I/O read to write ratio, while

TPC-C sees a 1.9:1 read-to-write ratio; and (ii) although

TPC-E uses pseudo-realistic data, TPC-E’s I/O access

pattern is as random as TPC-C. The latter suggests that

like TPC-C, TPC-E can benefit from SSDs, which have

superior random I/O support. To verify this, we replay

both disk traces on an Intel X25-E SSD and see dramatic

improvements for both TPC-C and TPC-E.

1. INTRODUCTION

On-Line Transaction Processing (OLTP) is used ex-

tensively to support the daily operations of a wide range

of businesses, from banking and grocery stores, to on-

line ECommerce web sites and financial markets. Be-

cause of its importance, OLTP has been a major op-

timization target for computer manufacturers, database

software vendors, system software vendors, and the cor-

responding research communities.

There are two standard TPC benchmarks for OLTP.

Since 1992, TPC-C [6] has been the primary bench-

mark for evaluating OLTP performance. Both indus-

try and the research community have gained deep un-

derstandings of TPC-C from many years of studies. In

February 2007, the new TPC-E benchmark [7] became

a TPC standard. It is designed to be a more realistic

OLTP benchmark than TPC-C, e.g., incorporating re-

alistic data skews and referential integrity constraints.

However, TPC-E is much more sophisticated than TPC-

C. Partly because of this, there is a lack of in-depth

understandings of TPC-E, potentially slowing down the

adoption of the benchmark.

In this paper, we study the TPC-E benchmark. We

take a comparison approach: we compare the TPC-E

benchmark with the familiar TPC-C benchmark to iden-

tify their similarities and differences. This approach is

Driver
Stock ExchangeCustomers

Ticker
Brokerage
Response

Customer
Request

Market
Response

Brokerage
Request

Brokerage
Response

Market
Response

Feed
Responseq

Ticker
Feed

C t R t
Brokerage House

System

Under Test

Customer Request Brokerage Request

Figure 1: TPC-E models a financial brokerage

house. (Figure is adapted from [8].)

beneficial in that (i) it takes advantage of our existing

knowledge of TPC-C to facilitate the understanding of

TPC-E; and (ii) the comparison results show where ex-

isting techniques can be applied effectively to TPC-E

and where new optimizations may be needed.

We focus on the I/O behaviors of the benchmarks be-

cause I/Os are often the major performance aspect in

OLTP systems. We use a TPC-E disk trace and a TPC-

C disk trace obtained on a commercial DBMS running

on medium-sized computer systems with hundreds of

disks [4]. We compare various I/O characteristics of

the two traces, including request types, sizes, spatial and

temporal locality. We find that TPC-E is more read in-

tensive than TPC-C, and its I/O access pattern is as ran-

dom as TPC-C, though TPC-E is designed to have more

realistic data skews. The latter suggests that like TPC-C,

flash-based Solid State Drives (SSDs) may significantly

improve the performance of TPC-E. We verify this point

by replaying the OLTP traces on an SSD.

The rest of the paper is organized as follows. Sec-

tion 2 provides a high level overviewof the TPC-E bench-

mark, and compares the major features of TPC-E with

those of TPC-C. Section 3 analyzes the two OLTP disk

traces to compare the I/O access patterns of TPC-E and

TPC-C. Section 4 reports the experimental results of re-

playing disk traces using a state-of-the-art SSD. Finally,

Section 5 concludes the paper.

2. TPC-E OVERVIEW

The TPC-E benchmark models a financial brokerage

house, as shown in Figure 1. There are three compo-



nents: customers, brokerage house, and stock exchange.

TPC-E’s focus is the database system supporting the

brokerage house, while customers and stock exchange

are simulated to drive transactions at the brokerage house.

In the TPC-E database, the brokerage house main-

tains information for customers (e.g., accounts, hold-

ings, watch lists), brokers (e.g., trades, trade history),

and the financial markets (e.g., companies, securities,

related news items, last trades). There are two main

types of transactions in TPC-E: customer-initiated trans-

actions and market-triggered transactions, as shown in

Figure 1. In customer-initiated transactions, customers

send requests to the brokerage house, which then queries

or updates its database, submits brokerage requests to

the stock exchange, and/or returns response to the cus-

tomers. TPC-E supports both immediate and limit trad-

ing orders. For the former, the brokerage house sends

brokerage requests immediately. For the latter, it records

the orders and their limit prices. In market-triggered

transactions, the stock exchange markets send trade re-

sults or real-time market ticker feeds to the brokerage

house. The brokerage house updates its database, checks

the recorded limit trading orders, and submits such or-

ders if the limit prices are met.

Table 1 compares TPC-E and TPC-C. First, their un-

derlying application models are different: TPC-E mod-

els a financial brokerage house, while TPC-C models a

more traditional wholesale supplier.

Second, there are 33 tables in TPC-E, over three times

as many as in TPC-C. Of the 33 TPC-E tables, there are

9 tables recording customer account information, 9 ta-

bles recording broker and trade information, 11 market-

related tables, and 4 dimension tables for addresses and

fixed information such as zip codes. 19 of the 33 tables

scale as the number of customers, 5 tables grow during

TPC-E runs, and the remaining 9 tables are static.

Third, TPC-E has twice as many columns as TPC-

C. However, a TPC-E table has on average 5.7 columns,

about half as many as TPC-C. Therefore, although TPC-

E includes many more tables for more sophisticated en-

tity relationships, the structures of individual TPC-E ta-

bles are relatively simpler.

Fourth, TPC-E has twice as many transaction types as

TPC-C. TPC-E has 6 read-only and 4 read-write trans-

action types, compared to 2 read-only and 3 read-write

transaction types in TPC-C. 76.9%of the generated trans-

actions in TPC-E are read-only, while only 8% of TPC-

C transactions are read-only. This suggests that TPC-E

is more read intensive than TPC-C.

Fifth, the TPC-E database is populated with pseudo-

real data that are based on the year 2000U.S. and Canada

census data and actual listings on the NYSE and NAS-

DAQ stock exchanges. In this way, TPC-E reflects nat-

ural data skews in the real world. This addresses the

Table 1: Comparing TPC-E and TPC-C features.
TPC-E TPC-C

Business model Brokerage house Wholesale supplier

Tables 33 9

Columns 188 92

Columns/Table 2–24, avg 5.7 3–21, avg 10.2

Transaction mix 4 RW (23.1%) 3 RW (92%)
6 RO (76.9%) 2 RO (8%)

Data generation Pseudo-real, based Random
on census data

Check 22 0
constraints

Referential Yes No
integrity

Note: The table is based on [6, 7, 8].

complaint of TPC-C using random data that do not re-

flect real-world data distributions.

Finally, TPC-E incorporates several features that are

found in real-world OLTP applications but missing in

TPC-C, such as check constraints and referential integrity.

In summary, TPC-E is a more sophisticated, more re-

alistic OLTP benchmark than TPC-C. However, its test

setup is more complicated, requiring the development

of customer and market drivers. To reduce such ef-

forts, TPC-E distributes code for the core driver logic

and describes example SQL statements for implement-

ing most TPC-E transactions. Nevertheless, the sophis-

tication and the lack of in-depth understandings of the

TPC-E benchmark may slow the adoption of the bench-

mark in industry and the research community.

3. COMPARING TPC-E AND TPC-C

USING OLTP DISK TRACES

In this section, we compare the I/O behaviors of the

TPC-E benchmark and the familiar TPC-C benchmark

using two OLTP disk traces obtained on a commercial

DBMS [4]1. We first describe the two OLTP traces, then

compare the I/O characteristics of the two traces.

Trace Description. The TPC-C trace was obtained on a

4 dual-core 3.4 GHz Xeons system with 64GB memory

and 392 15Krpm SCSI drives organized into 14 RAID-0

disk arrays of 28 disks each. The TPC-E trace was ob-

tained on a 4 quad-core 1.8 GHz Opterons system with

128 GB memory and 336 15Krpm SCSI drives orga-

nized into 12 RAID-0 disk arrays of 28 disks each. The

TPC-C run was configured with 14,000 warehouses and

300 users. The TPC-C trace is about 5 minutes long.

The TPC-E run was configuredwith 200,000 customers.

The TPC-E trace is about 10 minutes long.

The traces contain mainly I/O events and a few other

event types (such as thread, process, and context switch

events). Information about I/O events include device

IDs, offsets, sizes, request types, start and elapsed times.

1Kavalanekar et al. [4] described high-level characteristics of
14 storage traces, including the OLTP traces. Here, we take a
database centric view to analyze the OLTP traces in depth.



(a) A data device in TPC-C trace (b) A data device in TPC-E trace (c) The log device in TPC-E trace

Figure 2: Spatio-temporal graphs of the TPC-C and the TPC-E disk traces.

We estimate the database size by counting the number of

1MB units that see at least one I/O request: The TPC-C

database is 1.5 TB large, and the TPC-E database is 1.7

TB large. The sizes are roughly comparable. Moreover,

the I/O rates of the two traces are also roughly compa-

rable, as will be shown in Figure 3.

Spatio-Temporal Graphs. We begin our study by look-

ing at the two dimensional spatio-temporal graphs of the

traces. The trace events contain device IDs, correspond-

ing to disk arrays. For each device, we generate a spatio-

temporal graph as shown in Figure 2. Every (x, y) point
in the figure represents an I/O access to (512-byte) block

address y issued to the logical device at time x.

For both TPC-C and TPC-E, we find that the 2D graphs

fall into two categories: A single device has the pat-

tern of a diagonal line, while the rest of the devices all

have similar patterns with a large number of scattered

accesses. An explanation is that the device with the di-

agonal line pattern is the log device that sees mainly se-

quential writes, while OLTP data tables and indexes are

stored on the other devices. Figure 2(a) and (b) show

the patterns of the data devices in the two traces. Fig-

ure 2(c) shows the diagonal line pattern of the log de-

vice in TPC-E; the diagonal line pattern of the TPC-C

log device is very similar. Since the log access pattern is

easy to understand, we mainly analyze the I/O behaviors

of the data devices in the following. We will study the

log device at the end of the section.

Number of I/Os per Second. Figure 3 shows the num-

ber of I/Os for every second of a single data device in

the TPC-C and TPC-E traces. For the steady portions of

the traces, TPC-C sees an average 3360 I/Os per second,

and TPC-E sees an average 2740 I/Os per second. The

standard deviation of the I/O rate in the TPC-C (TPC-E)

trace is 2.2% (3.6%) of the average. Thus, the two traces

are roughly comparable.

I/O Request Breakdown. Table 2 shows the break-

down of device I/O request sizes and types in the two

benchmark runs. The table reports the breakdown as a

two-dimensional cube. The rows divide requests into

three categories based on request sizes: 8KB, 16KB, or

other. The columns divide requests into two categories

based on request types: read or write. The table shows

2

3

4

1
0
0
0
)

TPCC

2

3

4

1
0
0
0
)

TPCE

0

1

2

3

4

0 100 200 300

IO
P
S
(x
1
0
0
0
)

time (s)

TPCC

0

1

2

3

4

0 200 400 600

IO
P
S
(x
1
0
0
0
)

time (s)

TPCE

0

1

2

3

4

0 100 200 300

IO
P
S
(x
1
0
0
0
)

time (s)

TPCC

0

1

2

3

4

0 200 400 600

IO
P
S
(x
1
0
0
0
)

time (s)

TPCE

0

1

2

3

4

0 100 200 300

IO
P
S
(x
1
0
0
0
)

time (s)

TPCC

0

1

2

3

4

0 200 400 600

IO
P
S
(x
1
0
0
0
)

time (s)

TPCE

Figure 3: Number of I/Os for every second in the disk

trace of a single data device.

Table 2: I/O request breakdown for data devices.
TPC-C

Size Read Write Both types

8KB 65.70% 32.66% 98.36%

16KB 0.00% 1.49% 1.49%

other sizes 0.00% 0.15% 0.15%

all sizes 65.71% 34.29% 100.00%

TPC-E

Size Read Write Both types

8KB 90.68% 8.29% 98.97%

16KB 0.00% 0.79% 0.79%

other sizes 0.01% 0.23% 0.24%

all sizes 90.69% 9.31% 100.00%

the percentage of I/O requests in each category as well

as the one-dimensional and the total aggregate values.

From Table 2, we see that 8KB is by far the dom-

inant size (98.36% in TPC-C and 98.97% in TPC-E).

16KB I/Os are the second most significant. I/Os of sizes

other than 8KB are almost entirely writes. An explana-

tion is that the DBMS’s default I/O size is 8KB, while

in some rare cases writes to contiguous disk blocks are

merged together into a single request. This implies that

the I/Os are quite random, which is reasonable in TPC-

C. However, it seems counter-intuitive that TPC-E also

has such behavior since it is expected to have more data

skews. We will study this point further when analyzing

the temporal and spatial locality of the benchmarks.

Focusing on the request type breakdown, we see that

TPC-C sees 65.71% reads and 34.29% writes, a 1.9:1

read to write ratio, while TPC-E sees 90.69% reads and

9.31% writes, a 9.7:1 read to write ratio. Clearly, TPC-

E is more read intensive than TPC-C. This observation



0%

5%

10%

15%

20%

0 100 200 300

p
e
rc
e
n
t
o
f
to
ta
l
re
a
d
s

reuse distance (s)

TPCC

0%

5%

10%

15%

20%

0 200 400 600

p
e
rc
e
n
t
o
f
to
ta
l
re
a
d
s

reuse distance (s)

TPCE

0%

5%

10%

15%

20%

0 100 200 300

p
e
rc
e
n
t
o
f
to
ta
l
re
a
d
s

reuse distance (s)

TPCC

0%

5%

10%

15%

20%

0 200 400 600

p
e
rc
e
n
t
o
f
to
ta
l
re
a
d
s

reuse distance (s)

TPCE

Figure 4: Cumulative distribution of read reuses. A

read reuse is a read I/O to the same block address of

a previous read I/O.

0%

5%

10%

15%

20%

0 100 200 300

p
e
rc
e
n
t
o
f
to
ta
l
w
ri
te
s

reuse distance (s)

TPCC

0%

5%

10%

15%

20%

0 200 400 600

p
e
rc
e
n
t
o
f
to
ta
l
w
ri
te
s

reuse distance (s)

TPCE

0%

5%

10%

15%

20%

0 100 200 300

p
e
rc
e
n
t
o
f
to
ta
l
w
ri
te
s

reuse distance (s)

TPCC

0%

5%

10%

15%

20%

0 200 400 600

p
e
rc
e
n
t
o
f
to
ta
l
w
ri
te
s

reuse distance (s)

TPCE

Figure 5: Cumulative distribution of write reuses. A

write reuse is a write I/O to the same block address

of a previous write I/O.

confirms Table 1; TPC-E is designed to have a higher

percentage of read-only transactions than TPC-C.

Temporal Locality. We study the I/O temporal locality

of the TPC-E and TPC-C benchmarks. We define a read

reuse as an I/O read (R2) to the same block address of

a previous I/O read (R1). The time from issuing R1 to

issuing R2 is the reuse distance for R2. If there are mul-

tiple previous I/O reads having the same block address

as R2, we use the most recent previous I/O read to com-

pute the reuse distance of R2. Similarly, we define write

reuse and write reuse distance. In general, the shorter

the reuse distance and the higher percentage of reuses in

total I/Os, the more amenable the application is to I/O

optimizations on temporal locality.

Figure 4 and Figure 5 show the cumulative distribu-

tion of read and write reuses for data devices in the TPC-

C and TPC-E traces. The X-axis is reuse distance in

seconds. The Y-axis is percent of total read (write) ac-

cesses. For read reuse, 100% is the total number of read

accesses. For write reuse, 100% is the total number of

write accesses. The curves are cumulative distributions.

For example, in the TPC-E figures, the points at 600 sec-

onds show that read reuses with reuse distance ≤ 600

seconds consist of 8% of all I/O reads, and write reuses

with reuse distance ≤ 600 seconds consist of 4% of all

I/O writes in the TPC-E run. Note that 600 (300) sec-

onds is the trace length of TPC-E (TPC-C).

From Figure 4 and Figure 5, we see that TPC-E and

TPC-C have quite similar curves: There is not much

30%e
s TPCC

30%e
s TPCE

0%

5%

10%

15%

20%

25%

30%

0 20 40 60p
e
rc
e
n
t
o
f
to
ta
l
a
cc
e
ss
e
s

read to write distance (s)

TPCC

0%

5%

10%

15%

20%

25%

30%

0 30 60 90 120150p
e
rc
e
n
t
o
f
to
ta
l
a
cc
e
ss
e
s

read to write distance (s)

TPCE

Figure 6: Cumulative distribution of write after read

I/Os. A write after read is a write I/O such that there

is a previous read I/O to the same block address but

there is no other I/O to the same address in between.

temporal locality in either run. TPC-E has even fewer

read reuses than TPC-C, which is counter-intuitive since

TPC-E is designed to have more data skews. Moreover,

both benchmarks start to see I/O reuses at around 60 sec-

onds. This suggests that the main memory buffer pool

may play a role in shaping the reuse patterns seen here.

We study the buffer pool behavior next.

Understanding the Buffer Pool Behavior. We study

the behavior of the buffer pool by looking at read to

write distance in Figure 6. We define a write-after-read

as a write I/O (W ) to the same block address of a pre-

vious I/O read (R) and there is no other I/O to the same

block address in between R and W . The read to write

distance is the time from issuing R to issuing W . Typ-

ically, DBMSs perform updates by reading the destina-

tion database page into the main memory buffer pool (if

it is not already in the buffer pool), and then making

modifications to the page. Dirty page write backs are

often done asynchronously by a background I/O cleaner

thread/process. (Transaction durability is guaranteed by

the synchronous redo log). The purpose of this strategy

is to reuse pages in main memory for saving I/O opera-

tions. The read to write distance shows the duration that

a page is kept in the memory buffer pool.

In Figure 6, the curves show the cumulative distribu-

tions of write after read I/Os. We see that there is a jump

in both curves around 60 seconds. This means that the

buffer pool keeps a page for about 60 seconds before

writing it back. Note that this value is often determined

by the DBMS configurations.

Explanation of the Temporal Locality Figures. Now

we can use the understanding of the buffer pool behav-

ior to explain the seemingly counter-intuitive observa-

tion in Figure 4 and Figure 5. First, the reuse distances

are larger than 60 seconds because pages tend to stay

in the main memory buffer pool for about 60 seconds,

and any data reuses with distance less than 60 seconds

would be captured inside main memory. Therefore, I/O

devices do not see any reuses less than 60 seconds. Sec-

ond, TPC-E has poor temporal locality because the data



100%
TPCC

0%

20%

40%

60%

80%

100%
C

D
F

TPCC

8KB

16KB

64KB

256KB

1MB

0%

20%

40%

60%

80%

100%

0 10 20 30 40

C
D

F

number of reads to a unit

TPCC

8KB

16KB

64KB

256KB

1MB

0%

20%

40%

60%

80%

100%

0 10 20 30 40

C
D

F

number of reads to a unit

TPCC

8KB

16KB

64KB

256KB

1MB

0%

20%

40%

60%

80%

100%

0 10 20 30 40

C
D

F

number of reads to a unit

TPCC

8KB

16KB

64KB

256KB

1MB

100%
TPCE

0%

20%

40%

60%

80%

100%

C
D

F

TPCE

8KB

16KB

64KB

256KB

1MB

0%

20%

40%

60%

80%

100%

0 10 20 30 40

C
D

F

number of reads to a unit

TPCE

8KB

16KB

64KB

256KB

1MB

0%

20%

40%

60%

80%

100%

0 10 20 30 40

C
D

F

number of reads to a unit

TPCE

8KB

16KB

64KB

256KB

1MB

0%

20%

40%

60%

80%

100%

0 10 20 30 40

C
D

F

number of reads to a unit

TPCE

8KB

16KB

64KB

256KB

1MB

Figure 7: Cumulative distributions for number of read I/Os to a unit while varying unit size from 8KB to 1MB.

Table 3: 80-th and 99-th percentiles in Figure 7.
Unit 8KB TPC-E TPC-E TPC-C TPC-C
Size blocks 80-th 99-th 80-th 99-th

8KB 1 1 2 1 2

16KB 2 1 3 2 3

64KB 8 2 5 2 6

256KB 32 4 10 4 14

1MB 128 8 29 10 28

skews in TPC-E may already be captured by the DBMS

within the 60 second time when data pages are cached in

the main memory buffer pool. Since the DBMS already

effectively optimized away the data skews, the I/O de-

vices see little temporal locality in the I/O accesses.

Spatial Locality. We would like to understand if I/O

accesses tend to visit disk blocks that are near one an-

other. As shown in Figure 7, we count the number of

I/O reads for every unit where the unit size is a multiple

of the default 8KB I/O size. We vary the unit size from

8KB to 1MB. For example, when the unit size is 1MB,

we conceptually consider the I/O devices as organized

into 1MB sized units. Then we count the number of I/O

reads to every unit in the entire trace. We focus on units

with non-zero counts. The 1MB curve shows the cu-

mulative distribution of the per-unit count. Note that a

steep curve means that most units see a small number of

reads, indicating poor spatial locality.

Table 3 lists the 80-th and 99-th percentiles for Fig-

ure 7. For example, the table cell at the “TPC-E 99-th”

column and the 1MB rowmeans that 99% of 1MB-sized

units see at most 29 I/O reads in the entire TPC-E trace.

Note that a 1MB unit consists of 128 8KB blocks as

shown in the second column in Table 3. Since the dom-

inant I/O size is 8KB, this means that at most 29 out of

the 128 8KB blocks are accessed in the entire trace. This

shows very poor spatial locality at the 1MB granularity.

Similarly, we see poor spatial locality at 256KB, 64KB,

and 16KB granularities in both TPC-C and TPC-E. At

the 16KB granularity, 85% of the units see a single ac-

cess in TPC-E. Among the rest, 13% see 2 accesses, and

2% see 3 or more accesses. For comparison purpose, we

also include the cumulative distribution of 8KB reads.

92% of 8KB units see a single access in TPC-E, while

only 8% see more than one access, which corresponds

to the read reuses in Figure 4.

80%

100%
TPCC

80%

100%
TPCE

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60

C
D
F

TPCC

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60

C
D
F

TPCE

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60

C
D
F

log write size (KB)

TPCC

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60

C
D
F

log write size (KB)

TPCE

Figure 8: Cumulative distribution of log writes.

Log Write Size. For the most part, the sequential write

behavior of the log device is well-known. Here, we are

interested in the log write size distribution. Figure 8

shows the cumulative distribution of log writes. The

TPC-C and the TPC-E curves are quite similar: About

80% of log writes are less than 20KB large. This con-

firms the previous observation that log writes are mainly

small sequential writes [2]. Interestingly, the largest log

writes in both TPC-C and TPC-E are 60KB (and TPC-C

sees a non-trivial 7% log writes at 60KB). An explana-

tion is that the DBMS logging manager has an upper

limit of 60KB for flushing log writes from its log buffer.

Summary of Trace Study. In summary, we find in

the trace study that (i) TPC-E is more read intensive

than TPC-C, seeing a 9.7:1 read to write ratio; and (ii)

both TPC-E and TPC-C traces display poor temporal

and spatial locality. The former confirms TPC-E’s de-

sign choice of a higher percentage of read-only trans-

actions than TPC-C. However, the latter is seemingly

counter-intuitive because TPC-E is designed to havemore

data skews than TPC-C. Our explanation is that the mem-

ory size (8% of the TPC-E database size) is large enough

to capture the skewed accesses when the data are cached

in the main memory buffer pool. As a result of this fil-

tering effect, the I/O access pattern of TPC-E seen at

storage devices is as random as TPC-C.

4. REPLAYING TRACES USING SSD

The trace study in Section 3 shows that TPC-E’s I/O

access pattern is as random as TPC-C. This implies that

like TPC-C, TPC-E can benefit from flash-based Solid

State Drives (SSDs), which support much higher ran-

dom I/O performance than HDDs. The main weakness



4000

5000

6000

a
v
g

 I
/O

 l
a
te

n
c
y
 (

u
s
)

trace

replay w/ arrival times

3
0

9

3
3

8

4
8

8

4
1

7

0

1000

2000

3000

4000

5000

6000

TPCC TPCE

a
v
g

 I
/O

 l
a
te

n
c
y
 (

u
s
)

trace

replay w/ arrival times

replay w/o delays

3
0

9

3
3

8

4
8

8

4
1

7

0

1000

2000

3000

4000

5000

6000

TPCC TPCE

a
v
g

 I
/O

 l
a
te

n
c
y
 (

u
s
)

trace

replay w/ arrival times

replay w/o delays

3
0

9

3
3

8

4
8

8

4
1

7

0

1000

2000

3000

4000

5000

6000

TPCC TPCE

a
v
g

 I
/O

 l
a
te

n
c
y
 (

u
s
)

trace

replay w/ arrival times

replay w/o delays

Figure 9: OLTP trace replay on an Intel X25-E SSD.

of SSDs is their relative high price/GB. Fortunately, de-

vice capacity is often a secondary issue in OLTP. For

example, the TPC-C (TPC-E) trace utilizes only 4GB

(5GB) capacity per HDD. Recent studies investigated

the use of flash devices in OLTP systems [1, 2, 3, 5], but

none of the studies examined TPC-E. Here, we verify

the above understanding by comparing the performance

benefits of SSDs for TPC-C and TPC-E.

We model an SSD-only target system. We replay

the OLTP traces using a single 32GB Intel X25-E SSD

on a Dell Precision 390 workstation equipped with a

2.66GHz Intel Core 2 CPU and 2GB DRAM running

Linux 2.6.24. Since transactional logging can be effec-

tively supported by flash devices [2], we focus on re-

playing traces for data accesses. We consider the fol-

lowing issues in the experimental setup:

• Address mapping. We map all the 1MB units with

non-zero I/Os in the traces to a unified contiguous ad-

dress space. We divide the unified address space into

32GB-sized chunks, each conceptually mapped to an

SSD in the target system. The TPC-C and TPC-E

traces require 50 and 56 SSDs, respectively. We re-

play the traces, one chunk at a time on the single SSD.

• I/O access order and arrival times. We keep the order

of the I/O accesses in the traces during replay. For

I/O arrival times, we use two different settings. In

the first setting, we use the arrival times in the traces

during replay. In the second setting, we replay the I/O

accesses one after another without any delays.

• SSD initial state. Since the OLTP traces show random

access patterns, we prepare the SSD by writing 32GB

data using random 8KB writes before the replay.

• Device write cache. The I/O write latency in the traces

is on average 0.6ms. This means that the writes are

handled by the persistent caches in the RAID con-

trollers. We model similar write optimizations by en-

abling the SSD write cache during the replay.

Figure 9 shows the average I/O latencies computed from

the traces and measured in the SSD replay experiments.

Compared to the computed latencies in the traces, we

see that the average I/O latency is reduced by a factor

of 14 and 17 for TPC-C and TPC-E when replaying the

traces on the SSD with original I/O arrival times. For

the no-delay replay, which can be regarded as a stress

test, the SSD improves the average I/O latencies of the

traces by a factor of 9 and 14.

Overall, we see similar dramatic improvements in both

TPC-C and TPC-E by employing SSDs. This shows

that because TPC-E sees I/O access patterns as random

as TPC-C, techniques that improve random I/O perfor-

mance in TPC-C, such as employing SSDs, can be ef-

fectively applied to optimize TPC-E performance.

5. CONCLUSION

In this paper, we compared the new TPC-E bench-

markwith the familiar TPC-C benchmark using two disk

traces. We find that TPC-E is more read intensive than

TPC-C: the read to write ratio is 9.7:1 in TPC-E vs.

1.9:1 in TPC-C. Moreover, we find that although TPC-E

is designed to have realistic data skews, the skewed ac-

cesses can be well captured by the memory buffer pool.

As a result, the TPC-E trace shows random I/O access

patterns similar to TPC-C.

These findings have the following two implications.

First, the higher read to write ratio in TPC-E means that

I/O optimizations targeting writes may be less effective

for TPC-E. Second, the random I/O access patterns in

TPC-E imply that the conclusions of many previous I/O

studies for TPC-C can be still valid. For example, we

verified through an SSD replay study that like TPC-C,

replacing the HDDs with SSDs can dramatically im-

prove the I/O performance of TPC-E.

6. REFERENCES

[1] M. Canim, B. Bhattacharjee, G. A. Mihaila, C. A.

Lang, and K. A. Ross. An object placement advisor

for DB2 using solid state storage. PVLDB,

2(2):1318–1329, 2009.

[2] S. Chen. FlashLogging: exploiting flash devices for

synchronous logging performance. In SIGMOD,

2009.

[3] G. Graefe. The five-minute rule twenty years later.

In DaMoN Workshop, 2007.

[4] S. Kavalanekar, B. L. Worthington, Q. Zhang, and

V. Sharda. Characterization of storage workload

traces from production windows servers. In 4th

International Symposium on Workload

Characterization (IISWC), 2008.

[5] S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W.

Kim. A case for flash memory SSD in enterprise

database applications. In SIGMOD, 2008.

[6] Transaction Processing Performance Council.

TPC-C Benchmark Revision 5.10.1.

http://www.tpc.org/tpcc/.

[7] Transaction Processing Performance Council.

TPC-E Benchmark Version 1.9.0.

http://www.tpc.org/tpce/.

[8] Transaction Processing Performance Council.

TPC-E Benchmark Overview. http://www.tpc.org/

tpce/spec/TPCEpresentation.ppt, February 2007.


