Offering Open Hypermedia Services to the WWW:
a step-by-step approach for developers

Nikos Karousos

Research Academic Computer Technology Institute
Dept. of Computer Engineering & Informatics
University of Patras
26500 Rion, Greece
+30 936 648648

karousos@cti.gr

Siegfried Reich

Sun Technology Research Excellence Center
(SunTREC)

Salzburg Research, Austria
+43 662 2288 461

sreich@salzburgresearch.at

ABSTRACT

Hypermedia systems and more specifically open hypermedia
systems (OHS) provide a rich set of implementations of different
hypertext flavors such as navigational hypertext, spatial hypertext
or taxonomic hypertext. Additionally, these systems offer
component-based modular architectures and address
interoperability between hypertext domains. Despite multiple
efforts of integrating Web clients, a widespread adoption of OHS
technology by Web developers has not taken place. In this paper it
is argued that Web Services - which offer a component model for
Web applications - can be integrated in OHSs. An architectural
integration is proposed, a step-by-step process is outlined and an
example of integration is provided. This very approach is aimed to
benefit both worlds: the Web community with new rich
hypermedia functionality that extends the current navigational
hypermedia; and the OHS community by opening its tools and
platforms to the many developer groups of the Web community.

Keywords
Open Hypermedia Systems, Hypermedia Services, Web Services,
Babylon System.

1. INTRODUCTION

During the past decade, considerable research on Open
Hypermedia Systems (OHSs) was contacted in order to provide
services of structuring and accessing information. Several
hypermedia application domains were introduced, apart from the
classical navigational, such as spatial [20] and taxonomic [24], so
as to raise the number of cases where OHS structuring could be
useful. Furthermore, the design of Component-Based Open
Hypermedia Systems (CB-OHSs) [22] emphasizes the notion of
services because it aims at enabling the cooperation between

Copyright is held by the author/owner(s).
WWWwW 2003, May 20-24, 2003, Budapest, Hungary.
ACM xxx.

Ippokratis Pandis

Dept. of Computer Engineering & Informatics
University of Patras

26500 Rion, Greece
+30 932 193088

pandis@ceid.upatras.gr

Manolis Tzagarakis
Research Academic Computer Technology Institute
26500 Rion, Greece
+30 2610 960381

tzagara@cti.gr

independent components each of which provides a specialized set
of hypermedia services. The Open Hypermedia Systems Working
Group (OHSWG) [23] was established in order to address
interoperability problems between OHSs. The OHSWG developed
perspectives for creating new inter-domain services (as opposed to
intra-domain services which are valid for a single domain — such
as navigational hypermedia — only). However, as it has been
pointed out [21], the usage of hypermedia systems and services is
narrow and failed to reach a critical mass of people.

The World Wide Web (WWW) [9], which was developed under
different design principles, had the chance to meet global
acceptance and rapid progress. The broad acceptance results in
new services being developed continuously; additionally, new
users are becoming members of the Web community, without
being daunted by its well-known disadvantages and problems.
Recently, the notion of Web Service and its well-defined
specification [31] gave yet further boost in the progress of the
Web, since interoperability and reusability problems of network
applications seem to be addressed.

The Web Services technology was built under a perspective,
which has common elements with the OHS architecture. In
particular, the WWW is expanding as an environment, where
several network applications submit their services in a common
accessible manner. Such kind of reasoning is supported by OHSs
either by CB-OHSs architecture or by new proposed architectures
which differ from the classic notion of level design and are based
in the distribution and cooperation between independent multiple
open services [34]. Given the high expansion rate and the
universal popularity of the WWW, the open hypermedia
researchers are motivated to integrate their systems [1] or/and
extend their system services with it.

However, the task of integration between OHSs and the WWW
(or other third party client applications) is tricky and complicated.
Most Web integration efforts by the Hypermedia research
community are characterized by the following drawbacks: a)
Although users want to use only one hypermedia service, in many
cases they get to have access (and to pay) for all the OHS usability

[27]; b) Hypermedia extensions and Web integrations are usually
ad-hoc implementations, created by non-standardized
methodologies; ¢) The OHS community has so far not made great
usage of standard Web technologies

This paper presents a well-defined step-wise approach for making
open hypermedia services available to the broad Web community,
in a platform-independent way. With respect to both the existing
work in open hypermedia systems, and the open hypermedia
protocol (OHP) [26], this process does not require rigid changes
inside the architecture of OHSs, but proposes the creation of Web
Services that map the functions of hypermedia services and
operate autonomously as hypermedia clients. Hence, the usage of
independent hypermedia services into the Web is made available.
Moreover, like any other component technology, such as agents or
also CB-OHSs, the simple fact that people “think” in components
results in more usable software. OHS researchers find, through
Web Services approach, a ‘c — class’ tool [12] to attain their goal
for Web integration. ‘C-class’ tools are defined as the tools for
tool builders (rather than ‘b-class’, such as Web Services, which
would be tools for application developers — the ‘a-class’).

Section 2 briefly describes the related work for augmenting Web
Services based on OHSs. It focuses on the integration techniques
used so far and discusses the three considering issues listed above.
Section 3 analyses the Web Services as component technology,
while Section 4 presents the proposed process for providing
hypermedia services in the WWW. Finally, Section 5 is dedicated
to a case study for the proposed methodology over Babylon
Taxonomic System [9]. Summary and future work conclude the

paper.

2. RELATED WORK
2.1 Web integration efforts

During the last years, important efforts for Web integration are
reported in literature. Below are presented the most important of
them.

The Microcosm group [17] has performed work in this area with
several efforts, most notably the Distributed Link Service (DLS)
[11]. A Web server’s functionality is extended by hypermedia
functional (including computational links, navigational links,
etc.). Clients make requests, and the corresponding anchors are
integrated and translated into HTML documents on the fly.

In DHM [16], a platform-independent framework as an extension
to the Web browsers is presented (DHM/WWW [15]). For that
purpose, Java is used for writing a general applet that handles
browser integration and communication with the Hypermedia
service, and CGI scripts are used for the communication between
the browser and the Hypermedia (structure) server.

Chimera [1,4] extends a WWW server written in Java to make use
of the Chimera Java API . In another integration effort, a client
side server (or hypermedia session server) presents a user-
interface, which allows the Chimera functionality to be wrapped
[1,2].

Multiple Open Services project [34] presents an innovating idea.
It aims to split up services into components. Each component
provides a functionally independent service. Thus, is redesigned
the way in which services are provided at all layers in OHS
architecture.

Recently, an interesting effort, which was presented in [7],
attempted to map SoFAR system to Web Services with respectful
results.

Also, recent web technologies such as eXtensible Markup
Language (XML) [10] in combination with XLinks [19] and other
standards provide a limited degree of open hypermedia
functionality (e.g., more flexible navigational linking). In [3] the
use of XML for information integration enables complex
information management tasks and gives flexibility and
extensibility capabilities in prototype software tools.

A more detailed analysis over the techniques used for integrating
OHS with the Web in literature is presented in [1]. Also, apart
from the Web integration efforts, an architectural framework for
modeling third-party network application integrations with OHSs
has been presented [33].

The main deficiencies of the approaches outlined above can be
structured into implementation costs, missing methodology and
general availability. In the following these are described in more
detail.

2.2 Drawbacks of the Web integration efforts
Cost: Shackelford argues that: “..every service has a cost
associated with it...ideally, one should be able to use a service
when it is needed without having to pay for it when it is not.”
[27]. Until now, in nearly every Web integration effort the client
has access to the whole API of the OHS, even though only a part
of the OHS functionality is needed. Thus, the cost and the
complexity of the OHS service provision are multiplied. The goal
is the user to be provided with simple, flexible, scalable, and well-
defined services.

Ad-hoc Implementations: In most cases, the implementations that
enable Web integration are ad-hoc. Instead of the existence of a
(standard) methodology that integrates OHS with in the Web,
each time developers want to integrate an OHS with the Web they
are forced to invent their own techniques. This issue is
transforming into a serious problem in CB-OHSs, where
components are dynamically added or even modified, requiring
from the developer to make every time new integration efforts.
The lack of a concise methodology makes such integrations error-
prone and difficult to maintain. The observation that the developer
has to do the same effort many times is an indication to raise his
level of work to the ‘c-level’. Therefore, a standardized way for
developers to create Web Services through OHSs would be
desirable.

New Web technologies: The OHS community has so far not made
great usage of standard Web technologies. The reasons therefore
are manifold, the key argument being that most Web standards do
not explicitly express a notion of links. Web Services as an
emerging standard for component-based software development
could well be a technology whose adoption by the OHS
community would benefit both worlds: the OHS people would
base their tools on technologies that are widely available; the Web
community would benefit by the much richer structuring facilities
offered by typical OHS services.

3. WEB SERVICES
3.1 What is a Web Service

Web Services are an emerging technology to reuse software as
services over the Internet by wrapping underlying computing
models with XML [6].

The W3C definition of a Web Service argues that: “a Web Service
is a software application identified by a URI [IETF RFC 2396],
whose interfaces and binding are capable of being defined,
described and discovered by XML artifacts and supports direct
interactions with other software applications using XML based
messages via internet-based protocols”. [31]

3.2 Model

An ordinary Web Service model consists of a SOAP (Simple
Object Access Protocol) server, which interacts with its
environment through a collection of operations that are network-
accessible through standardized XML-messaging [30]. Using a
Web Service Description Language (WSDL), one can fully
describe all Web Service access details.

The establishment of a set of standards for Web Service has
driven most of the developers to design and implement Web
Services in a very common way. Those standards gave application
developers the opportunity to use Web Services easily and
effortlessly. Figure 1 presents a schema of the usage of Web
Services components.

Web Service . UDDI
e Search for a web service > Registry

Web Services

SOAP Client c
Repository

A

WSDL of Result Service

Web Service
Communication
(SOAP Request /
SOAP Response)

Registration /
Publication

Web Service

WSDL

SOAP
Server

Figure 1. Web Service usage

SOAP (Simple Object Access Protocol) is a W3C standard [30],
which is used to define protocols able to send simple objects in
XML format. Thus, any SOAP-enabled service can receive calls
for methods, passing objects in XML. The main protocol used in
conjunction with the SOAP protocol is HTTP, although it can be
casily used with many other protocols such as FTP or SMTP.

WSDL (Web Service Description Language) is an XML-based
language, used to specify the interface provided by a Web Service.
W3C standardized WSDL [32] for the description of a Web
Service, enabling its use by any user that links to the certain
WSDL file.

UDDI (Universal Description, Discovery, and Integration) is a
registry protocol [29] for Web-based services. It is used to
provide information about Web Services, and it can be private,
public or hybrid. A registry entry must contain certain information
about the service. Initially, it must have the WSDL file describing
the service as well as the location of the runtime service. In
addition, a registry entry may contain any other useful information
about the service and its provider.

e A public registry provides any developer with the ability to
publish a Web Service in the registry. Therefore, the registry
entries are widely available to the public for searching and
downloading.

e A private registry is not provided widely to the public.
Instead, it is restricted to a single enterprise enabling the

sharing of business components only between the enterprise
clients.

e A hybrid registry is available to the public but with certain
restrictions.

3.3 Advantages

The Web Service architecture is qualified by the following
advantages [13]:

Interoperability. A Web Service provides hardware and software
platform independence. Any client that uses the standard Web
Services technologies can easily access a Web Service. By using
WSDL files a SOAP client can easily be automatically created.

Encapsulation. A Web Service can easily be consolidated in any
application, regardless of the internal programming details of the
component.

Availability. The Web Service developer is able to publish enough
information for any other developer to use, and create a Web
Service client.

Modularity: Web Services provide modular advantages such as
reusability and extensibility.

Self-description: Web Services have the ability to describe
themselves in a way that can easily be recognized. Thus, the
interface, the location and access information of the Web Service
is identified by any external application.

Public ability: Web Services descriptions are provided through a
wide public repository, and can be found and used by any user.

Summarizing, in contrast to using HTTP as a transport layer
protocol with proprietary semantics attached to it, the notion of
Web Services allows for the semantics of the remote method
invocation to be explicit and thus to processed by software
components autonomously. In combination with the
exchangeability of the underlying transport protocol and the wide
availability of implementations, this results in a new quality for
component-based software development in Internet environments.

4. PROPOSED APPROACH

The main goal of this paper is to prescribe a process for creating
Web Services and mapping functions of hypermedia services to
operations of Web Services and vice versa. The proposed
implementation process provides independence from the overall
OHS architecture, and this is the main advantage from the other
techniques described so far. Particularly, as shown in figure 2 that
presents the proposed architecture, it is indicated that neither the
structure of the hypermedia components nor their communication
protocol should be changed when an OHS developer wants to
publish a service on the Web.

It must be clarified that the target is not the OHS integration of a
Web Browser or any other client side application. Instead, this
implementation process targets on mapping structure servers to
Web Services in order to make OHS features accessible through
the Internet. Those Web Services behave as clients for the OHS
but they also behave as servers to the SOAP-aware applications.

As discussed above, the OHS community has mainly focused on
the integration within third party clients with a view to provide
hypermedia services to a number of user-friendly applications.
Those attempts usually use either wrappers or communicators or
other communication applications of structure servers, so that the
clients are provided with hypermedia awareness. Typically,
wrapper-implementations of clients of OHSs are ad-hoc

http://www.w3.org/TR/ws-desc-reqs/#URIRef

implementations. Each time, an OHS integration with an
additional client application is needed, the necessity to create
another ad-hoc communicator arises. Therefore, by adopting the
proposed methodology, the effort for integrating new clients will
be significantly reduced. Technically, in order to integrate a
hypermedia service, the creation of a corresponding SOAP server
is required. Furthermore coding of communication shims may be
necessary. The notion of communicator has been referred in [33].
However in the proposed approach this communicator resides on
server side and has to be created only once for a specific
hypermedia service

The mapping of the structure server to Web Service creates a new
middleware service. Hence, every time an application needs OHS
services, the steps of integration method are simple. The
generation of SOAP client can be done automatically (based on
Web Service corresponding WSDL file). By the use of the widely
accepted Web Services, the provision of a set of hypermedia
services in the Internet through a common communication
platform is achieved.

Specific SOAP-aware
Client application
%;gzt Wrapper SOAP Client %I::gt
A A
SOAP
/
OHP SOAP Server | Serer
Side
Wrapper
A
OHP
4 /
Selrver Structure Structure
Side Server Server

(a) (b)

Figure 2. The classic (a) and the proposed (b) architecture for
providing OHS services to external applications.

4.1 Steps

The steps of the proposed implementation process are the
following:

Service specification: The service design starts with the
specification of the service that will be created. Thereby, the
service task, the target user group and the operations provided
must be defined. A very important aspect of this step is the fact
that there is no actual need to provide one-to-one mapping to
every service provided by the OHS. What is more, there is no
need to define a Web Service that maps every function of the
structure server to operations. The services can emerge by a single
hypermedia structure server or even by a subset of the functions
supported by a structure server in an OHS. For example, the data
navigation service, without authoring rights, in an OHS could be
provided as a service on its own. Furthermore, versioning,
storage, transaction and searching services could be published as
independent Web Services.

A single Web Service is consisted of a set of simple operations.
For each operation, there must be a specification of the name, the
description, the type, the way it is called by a client, and the
parameters it receives and passes. Every operation can map one
ore more functions of the structure server to Web Service.

WSDL file creation: As long as the definition of the specifications
is set, a description of the service is created using WSDL in a

simple XML format. The latter WSDL file will comprise of the
‘guide’ for the development of the service as well as of the
creation of the SOAP clients.

Even though, the WSDL file describes the Web Service API with
a well-defined way, Web Service documentation has to exist. This
documentation needs to describe specific details about the client
behavior and the calling sequence of Web Service’s operations
giving to clients the hypermedia perspective of the Web Service.

The Web Service implementation assumes two basic
characteristics: the existence of the WSDL file of the Web Service
and the knowledge of the API of the structure server. The form
that the OHS API is provided is not affecting the implementation
procedure. The methodology does not alternate the functionality
of the OHS, but, on the contrary, extends each of its services in a
very simple and clear way.

SOAP Server creation: The development process continues with
the implementation of a SOAP server, which can use the OHS or
structure server functionality through its API. This is a fairly
simple procedure because most of the present programming tools
can automatically create SOAP servers and clients, as they seem
to be aware of their usefulness (Microsoft .net, Delphi studio 7,
etc).

The created Web Service, supports several operations. For each
operation a corresponding internal function must be developed.
This function must accept the parameters passed by the client as a
service request. Furthermore, the function must execute one or
more calls to the OHS, via its API, and then return a response.
Communication between Web services and OHS structure servers
requires data sets to be converted from structure server-supported
data format into XML structures according to the corresponding
WSDL file.

The internal functions of the Web Services are divided to a)
simple mapping functions and b) complex functions. The simple
mapping functions are those that map with one-to-one relationship
the corresponding functions of structure servers. On the other
hand, the complex functions call several functions of structure
servers and combine the received results, aiming to provide clients
with the requested information. Every complex function
accomplishes a specific task, and has its own algorithm that can
be presented with a diagram of the used hypermedia functions and
the other data processes.

In order to clarify the ideas stated above, the CB-OHS conceptual
architecture [22] will be the guide. The Web Service is
implemented as a hypermedia client. The SOAP server substitutes
the client layer that uses the structure server APL In addition,
SOAP functions take the place of the client interface through a
client APIL, which is the API of the Web Service described by the
WSDL file. This creation procedure results in a new middleware
layer, which acts as client for structure server and as server for
third party applications (client layer).

SOAP Client creation: The next phase is to develop a simple
SOAP client. The SOAP client is used for testing the
communication of the Web Service. It is worth mentioning that
there are various tools that can generate a SOAP client
automatically. These tools only need to know the URI of the
WSDL description file of the service.

Along with the creation of a SOAP client, a simple user interface
is needed. The user interface is required so as the functionality of
the Web Service to be checked.

Publication: The proposed methodology is concluded by the
publication of the Web Service. A Web Service is published when
it is registered using UDDI. Hence, the discovery procedure of the
Web Service is possible. Additionally, new description languages
have been created, such as DAML-S [5], providing semantic
information about Web Services.

Despite the fact that a typical Web Service publication is formed
only by the UDDI registration, there is also the need of demo
software that is available to the users and demonstrates the usage
of the Web Service (e.g Google Web Service API and Demo
Software [14]).

4.2 Advantages

The implementation process described above provides a set of
advantages in conjunction with the existing Web integration
technologies. Firstly, Web Services provide by themselves a set of
advantages that have been mentioned before. Secondly, the
proposed implementation process provides the following
additional advantages:

e Since the Web Service creation mechanism takes place in the
client layer of the structure server, neither structure or
protocol alteration, nor the OHS operations modification is
required.

e It provides the capability of creating selective services from
the whole set of the hypermedia services.

e The amount of the creation time for such service is fairly
reduced. Most of the times, the operation source code of the
Web Service is identical to the OHS client layer functions. In
addition, most development tools fully support SOAP service
creation.

e It does not affect at other OHS services and it can
simultaneously operate with other components and clients of
the OHS.

e It can easily be extended. In such cases, the only required
tasks are the enrichment of the WSDL description file and
the additional created operations implementation.

4.3 Drawbacks

The main drawback is encountered in the early steps of the
proposed methodology. That happens because it is difficult to
define a Web Service with simple operations, from a complicated
system.

Besides, when the OHS API or the content type changes
dynamically, it may be is impossible to completely define the
request and response parameters or even the operation at all.
WSDL descriptor file cannot be dynamically changed.

Finally, some importnant issues like QoS, transaction iformation
and sequrity issues are not yet fully researched and standarized in
Web Services.

5. CASE STUDY: MAPPING BABYLON
SERVICES TO WEB SERVICES

The main goal, that led to proposing this methodology was to
extend some of Babylon System services as Web Services. A brief
overview of the Babylon System is presented next (a more
detailed description can be found in [18]), as well as a Web
Service creation example.

5.1 Architecture and Specification Of
Babylon System
5.1.1 Overall

The Babylon ! system is based on the idea to create an integrated
framework aiming to provide multiple categorization services
using abstractions met in taxonomies. The main goal is to provide
developers with an easy and fast way to construct Internet services
for item categorization.

The model has the following features: The main entity of the data
model is the object entity called ‘item’ in which several
characteristics are assigned. Each item can be inserted in a single
category. Each category is identified by a group of characteristics
and may contain a set of items or other categories, formulating a
tree-structure. The system supports the creation of category
shortcuts in other categories of a tree, giving the notion of
relevance. Finally, the meaning of association is also defined; a
specific relationship between different tree categories that are
being used for automatic tree-to-tree item transferring and sharing.

During the design and implementation of Babylon System, there
was special care for two innovating features for OHSs a) user
management and category sharing capabilities and, b) association
capabilities between similar categories of different taxonomies,
targeting on automatic update of all the common interest
categories. This feature allows end users to get notified when
associated categories of other taxonomies change (e.g. when items
are added or deleted).

The targeted task is to redefine Babylon System as an integrated
component supporting taxonomic services in CB-OHSs such as
Callimachus [28].

5.1.2 Architecture

Babylon’s architecture consists of three layers: a) the storage layer
that is responsible for storing and managing the structural and
non-structural information imported into the system, b) the
taxonomic management layer that provides taxonomic creation
and manipulation services and c) the client layer, which consists
of either independent applications or several tree-structure
applications that provide tree service development capabilities.
The conceptual architecture of Babylon system is presented in
figure 3.

The storage layer and the taxonomic management layer comprise
of the basic infrastructure that provides taxonomic services for
developers. More specifically, the storage layer is the repository
of the system, composed by the structure storage system and the
data storage system. The structure storage system stores and
organizes the structural information while the data storage system
is responsible for the user-imported data. Besides, the taxonomic
layer provides basic taxonomic management capabilities to the
system by serving structure and content management as well as
sharing and comparison requests. The kernel of this layer is a
taxonomic structure server, which is responsible for the
taxonomic structure creation, management and storing as well as
the data categorization requests. The communication with the
client layer is achieved using the HTTP protocol, sending the data
in a very simple XML format.

! Inspired by the hanging gardens of Babylon

Client
Client Layer
Bookmark Document
Directory Management Client
Service Service

Babylon Tree Management
Structure Server

Storage Layer

Figure 3. Conceptual Babylon architecture. The level division
and the services naming was made according to the CB-OHS
architecture.

5.2 Offering Babylon Taxonomic services
through Web Services

The target is to extend some Babylon Services into the Internet as
Web Services. Below there is an example for the creation of such
a Web Service.

Service specification: The Babylon System is currently managing
a set of taxonomic structures, each one of which is used for the
categorization of type-specific pieces of information. One of these
taxonomies is called Babylon URL Manager. Web Users can
perform navigation and authoring tasks using the Babylon URL
Manager in a Web directory service.

Next, we define a simple service called
Babylon WebDirectoryService that provides free navigation
capabilities over Babylon URL taxonomies. The service provided
to public, prohibits the authoring either of the tree or the data.

The WebDirectoryService communicates with SOAP over HTTP.
The available operations are:

1. DoOpenCategory: SOAP Request — Response Action - The
operation opens a category and returns all the sub-categories
and the urls included.

2. DoGetCategoryPath. SOAP Request — Response Action -
The operation returns the absolute path of the categories that
a user must follow to find a certain category.

3. DoGetUrlCategory. SOAP Request — Response Action -
Returns the category in which a specific url is located.

4. DoSearchUrl. SOAP Request — Response Action - Returns
the categories and their urls by their title.

WSDL file creation: For each operation, we define the parameters
and finally we create the Babylon WebDirectoryService WSDL
file [8].

SOAP Server creation: Following the proposed methodology, we
create a PHP-SOAP server, using a corresponding PHP-SOAP
unit [25], in which we define the URI of the WSDL file.

Afterwards, for each operation defined, a function that accepts
and returns the proper parameters is created. For instance, the
DoOpenCategory function just receives the category id and then
calls the Babylon server’s procedures GetChildren(idcategroy)
and GetNodeltems(idcategory). Then, it converts the data (using
XSL and XML parsing) in SOAP oriented data. This is a complex
function. On the other hand, the functions used for the last three

operations (DoGetCategoryPath, DoGetUrlCategory,
DoSearchUrl) are simple mapping functions. These functions just
call the corresponding Babylon server function and return the data
in SOAP format.

SOAP Client creation: A PHP-SOAP (testing) client is created,
based on the corresponding WSDL file and the communication
with the Web Service is tested. Next, a plain Web Interface is
created so the Web Directory Service Tree to be visible. A demo
site of Babylon’s Web Service is located in [8].

Publication: The last important task is to publish the created Web
Service through UDDI. Also, it is rather simple to create a
corresponding demo version. This is achieved by a slight
transofmation of the allready created testing client. Then it is
published as an Downloadable Demo Version.

5.3 Resulted architectures

The implementation process, which was presented in the previous
subsection, can act as a “guide” (a ‘c-class’ approach) so that new
Web Services are created or existing Web Services are altered.
The conceptual architecture when a new service is added in
Babylon System is altered to the schema presented in figure 4, in
which Web Service requester is any SOAP-aware network
application. In figure 4 the combination between the former
conceptual architecture schema of Babylon System (figure 3) and
the schema of the usage of Web Services (figure 1) is obvious.

Search of a
Web Service
Web Service - UDDI
Requester - Registr
4 =~ WSDL of s
result service
Soap Rgquest / Registrati ublication
Respgnse
Web
Service
Soap a
Server E Client
SS API
Babylon Tree Management
Structure Server
Storage Layer

Figure 4. Mapping a Babylon Service to Web Service.

An interesting aspect of the proposed Web Service creation
process occurs when someone tries to create a Web Service that
has mapped all the services provided by the OHS. In this case, a
central Web Service is implemented. This central Web Service
can serve other specific-purpose Web Services. In this way, the
whole OHS API is extended through a single Web Service. The
main drawback of this aspect is that in most cases this
implementation will be rather tricky due to the complexity of the
operations of OHSs components.

Nevertheless, Babylon system exhibits a controlled complexity at
the functional level. Therefore, the implementation of a central
Web Service is possible, for the process of a large set of
taxonomic services. By this way Babylon system’s services are
offered through a single Web Service. The resulted architecture,
in this case, for Babylon System is presented in figure 5.

Web Service

Soap
Server

Soap Client

Soap Request /
Response

Web

Service
Soap Client
Server

SS API

TAsSM

Babylon Tree Management
Structure Server

‘ Storage Layer

Figure 5. Full mapping of Babylon structure server.

6. FUTURE WORK

The future work of the approach presented in this paper focuses
on the implementation of a set of tools that can automatically
produce Web Services from UML schemas.

There are a variety of tools available that can create a WSDL file
from an IDL definition of a service. In addition, most of the
modern programming languages and some stand-alone tools can
generate the SOAP Server and SOAP client code or executable
based on a giving WSDL file. The main goal is to build an
integrated developer framework able to generate Web Service
skeleton sources that have hypermedia awareness and map every
hypermedia structure server function. This framework will be able
to create also automatically Web Service clients that support the
SOAP communication with Web Service.

The Construct development environment [34, 35] provides
development tools that assist the system developers in the
generation of set of services that make up a hypermedia system
[35]. Construct could be extended in order (a) to support IDL to
WSDL tools and (b) to rebuild CSC (construct service compiler)
so that it creates also a mapped Web Service based on the
structure server, as outlined in figure 6.

UML to IDL UML to IDL

IDL Spec

IDL Spec WSDL Spec

cse CsC CwsC
Y Y
Java Servicge Java Servide, | Java WS
Skeletons Skeletons Skeletons

(@) (b)

Figure 6. The current (a) and the proposed development
process (b) with the Construct development tools. CWSC
stands for Construct Web Service Compiler.

7. CONCLUSIONS

This paper argues for a step-wise approach to make the rich
functionality of Open Hypermedia Systems (OHS) available to the
web community. Using well-defined and accepted component-

based technologies such as Web Services will provide a broad
platform for further usage and extension for web developers.
Additionally, it was shown an example of integration with the
Babylon system.

It is believed that this approach offers multiple benefits: by
providing open and standard services the OHS community
benefits by the acceptance and popularity of existing tools and
services, the web community on the other hand can build on well
established research prototypes; finally, end-users will benefit by
the unique features that can be offered only by OHSs.

8. ACKNOWLEDGMENTS

The authors would like to thank loannis Panaretou from the
Business Management & Administration Department at the
University of Patras for his support during this research.

REFERENCES

[1] Anderson, K. M. (1997). Integrating Open Hypermedia
Systems with the World Wide Web. In Proceedings of the
1997 ACM Hypertext Conference, (Southampton, UK).

[2] Anderson, K. M. (2001). The extensibility mechanisms of the
Chimera open hypermedia system. In Journal of Network and
Computer Applications, 24, pp. 75-86.

[3] Andreson, K. M., and Sherba S. A. (2001). Using XML to
support Information Integration. Proceedings of the 7
Workshop on Open Hypermedia Systems, Aarhus, 2001.
Lecture Notes in Computer Science (LNCS) 2266.

[4] Anderson, K. M., Taylor, R. N., and Whitehead, E. J. (1994).
Chimera: Hypertext for heterogeneous software
environments. In Proceedings of the ACM European
conference on hypermedia technology (ECHT '94), Sept. 18-
23, 1994, Edinburgh, Scotland, UK, pp. 94-107.

[5] Ankolenkar, A., et al. (2002). DAML-S: Web Service
Description for the Semantic Web. Presented at The First
International Semantic Web Conference (ISWC), 2002.

[6] Aoyama, M., et al. (2002). Web Services Engineering:
Promises and Challenges ICSE'02, 02, May 19-25, 2002,
Orlando, Florida, USA.

[7] Avila-Rosas, A., Moreau, L., Dialani, V., Miles, S., and Liu,
X. (2002). Agents for the Grid: A comparison with Web
Services (part II: Service Discovery). In AAMAS’02, July,
2002, Bologna, Italy.

[8] Babylon System’s Web Service Demo. At URL:
<http://www.optionsnet.gr/babylonproject/Webservice>.

[9] Berners-Lee, T., Cailliau, R., Luotonen, A., Nielsen, H. F.,
and Secret, A. (1994). The World-Wide Web.
Communications of the ACM, 37(8), pp. 76-82.

[10]Bray, T., Paoli, J., and Sperberg-McQueen, C. M. Extensile
Markup Language (XML) 1.0, W3C Recommendation, 10-
Feb-1998. At URL: <http://www.w3.org/TR/REC-xml>.

[11]Carr, L., et al. (1995). The Distributed Link Service: A Tool
for Publishers, Authors and Readers. In Fourth International
World Wide Web Conference: “The Web Revolution”.
Boston, Massachusetts, USA.

[12]Engelbart, D. (1998). HT’98 OHS Wokshop Keynote
Address.

http://www.w3.org/TR/REC-xml
http://www.optionsnet.gr/babylonproject/webservice

[13]Fremantle, P., Weerawarana, S., and Khalaf, R. (2002).
Enterprise Services, Communications of the ACM, October
2002/Vol.45.No 10, pp.77-82.

[14] Google Web APIs Home. At URL:
<http://www.google.com/apis/>.

[15] Gronbaek, K., Bouvin, O. N., Sloth, K. (1997). Designing
Dexter-based Hypermedia Services for the World Wide Web.
In Proc. of Hypertext *97. Southampton, UK, pp. 146-156.

[16]Halasz, F., and Schwartz, M. (1994). The Dexter Hypertext
Reference Model. Communications of the ACM, 1994, 37
(2), pp- 30-39.

[17]Hall, W., Davis, H., and Hutchings, G. (1996). Rethinking
Hypermedia: The Microcosm Approach. Kluwer Academic
Publishers, Norwell, Massachusetts, USA.

[18]Karousos, N., Panaretou, 1., Pandis, 1., and Tzagarakis, M.
(2002). Babylon Bookmarks: A Taxonomic Approach to the
Management of WWW Bookmarks. MIS’02, (Esbjerg,
Denmark).

[19]Maler, E., and DeRose, S. (1998). XML Linking Language
(XLink). At URL: <http://www.w3.0org/TR/1998/WD-xlink-
19980303>.

[20]Marshall, C., and Shipman, F. (1995). Spatial hypertext:
Designing for change. Communications of the ACM, 38(8),
pp 88-97.

[21]Niirnberg, P. J., and schraefel, m. c. (2002). Relationships
Among Structural Computing and Other Fields. JNCA
Special Issue on Structural Computing, 2002.

[22]Niirnberg, P. J., Leggett, J. J., and Wiil, U. K. (1998). An
agenda for open hypermedia research. In Proceedings of the
9nth ACM Conference on Hypertext, June 20-24, 1998,
Pittsburgh, PA, pp. 198-206.

[23]Open Hypermedia Systems Working Group — OHSWG
WWW site. At URL: <http://www.cs.aue.auc.dk/ohswg>.

[24]Parunak, H. (1991). Don’t link me in: Set based hypermedia
for taxonomic reasoning. In Proceedings of the 1991 ACM
Hypertext Conference, (San Antonio, TX, Dec), ACM Press,
pp. 233-242.

[25]PHP-SOAP Unit (NuSOAP). At URL:
<http://dietrich.ganx4.com/nusoap/index.php>.

[26]Reich, S., Wiil, U. K., Nirnberg, P. J., Davis, H. C,
Gronbacek, K., Anderson, K. M., Millard, D. E., and Haake,
J. M. Addressing interoperability in open hypermedia: The
design of the open hypermedia protocol. Special issue on
open hypermedia. The New Review of Hypermedia and
Multimedia, 5, pp. 207-248.

[27] Shackelford, D. E., Smith, J. B., Smith F. D. (1993). The
Architecture and Implementation of a Distributed
Hypermedia Storage System. In Proceedings of the 1993
ACM Hypertext Conference, (Seattle, WA, Nov), ACM
press, pp. 1-13.

[28] Tzagarakis, M., Avramidis, D., Kyriakopoulou, M.,
Schraefel, M., Vaitis, M., and Christodoulakis, D. (2002).
Structuring Primitives in the Callimachus Component-Based
Open Hypermedia System. INCA Special Issue on Structural
Computing, 2002.

[29] Universal Description, Discovery and Integration of Web
Services (UDDI). At URL: <http://www.uddi.org>.

[30]W3C Simple Object Access Protocol (SOAP). At URL:
<http://www.w3.org/tr/SOAP>.

[31]W3C Web Services Architecture Domain. At URL:
<http:/ www.w3.0rg/2002/ws/>.

[32]W3C Web Services Description Language (WSDL). At
URL: <http://www.w3.org/tt/ WSDL>

[33] Whitehead, E. J. (1997). An Architectural Model for
Application Integration in Open Hypermedia Environments.
In Proc. of Hypertext’97, (Southampton, UK), pp. 1-12.

[34]Will, U. K., Hicks, L. D., and Nurnberg P. J. (2001).
Multiple Open Services : A New Approach to Service
Provision in Open Hypermedia Systems. In Proceedings of
the 2001 Hypertext, (Aarhus, Denmark), pp. 83-92.

[35]Wiil, U. K., Nirnberg, P. J., Hicks, D. L., and Reich, S.
(2000). A development Environment for Building
Component-Based Open Hypermedia System. In Proc. of
ACM Hypertext’00, (San Antonio, TX), pp. 266-267.

http://www.w3.org/tr/WSDL
http://www.w3.org/2002/ws/
http://www.w3.org/tr/SOAP
http://www.uddi.org/
http://dietrich.ganx4.com/nusoap/index.php
http://www.cs.aue.auc.dk/ohswg
http://www.w3.org/TR/1998/WD-xlink-19980303
http://www.w3.org/TR/1998/WD-xlink-19980303
http://www.google.com/apis/

	INTRODUCTION
	RELATED WORK
	Web integration efforts
	Drawbacks of the Web integration efforts

	WEB SERVICES
	What is a Web Service
	Model
	Advantages

	PROPOSED APPROACH
	Steps
	Advantages
	Drawbacks

	CASE STUDY: MAPPING BABYLON SERVICES TO WEB SERVICES
	Architecture and Specification Of Babylon System
	Overall
	Architecture

	Offering Babylon Taxonomic services through Web Services
	Resulted architectures

	FUTURE WORK
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

